Piracetam Defines a New Binding Site for Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic Acid (AMPA) Receptors

Journal of Medicinal Chemistry
2010.0

Abstract

Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

Knowledge Graph

Similar Paper

Piracetam Defines a New Binding Site for Allosteric Modulators of α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic Acid (AMPA) Receptors
Journal of Medicinal Chemistry 2010.0
Positive and Negative Allosteric Modulators ofN-Methyl-<scp>d</scp>-aspartate (NMDA) Receptors: Structure–Activity Relationships and Mechanisms of Action
Journal of Medicinal Chemistry 2019.0
Tweaking Subtype Selectivity and Agonist Efficacy at (S)-2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) Receptors in a Small Series of BnTetAMPA Analogues
Journal of Medicinal Chemistry 2016.0
Enzymic resolution and binding to rat brain membranes of the glutamic acid agonist .alpha.-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
Journal of Medicinal Chemistry 1983.0
Aminoanthraquinones as novel ligands at the polyamine binding site on the N-methyl-d-aspartate receptor complex
Bioorganic &amp; Medicinal Chemistry Letters 2000.0
Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABA<sub>A</sub>R) Modulators Acting at the Benzodiazepine Binding Site: An Update
Journal of Medicinal Chemistry 2020.0
The Structure–Activity Relationship of a Tetrahydroisoquinoline Class ofN-Methyl-<scp>d</scp>-Aspartate Receptor Modulators that Potentiates GluN2B-ContainingN-Methyl-<scp>d</scp>-Aspartate Receptors
Journal of Medicinal Chemistry 2017.0
1H-Cyclopentapyrimidine-2,4(1H,3H)-dione-Related Ionotropic Glutamate Receptors Ligands. Structure−Activity Relationships and Identification of Potent and Selective iGluR5 Modulators
Journal of Medicinal Chemistry 2008.0
Synthesis of (3-hydroxy-pyrazolin-5-yl)glycine based ligands interacting with ionotropic glutamate receptors
European Journal of Medicinal Chemistry 2014.0
Characterization of the mechanism of anticonvulsant activity for a selected set of putative AMPA receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2003.0