Synthesis and QSAR of Quinazoline Sulfonamides As Highly Potent Human Histamine H4 Receptor Inverse Agonists

Journal of Medicinal Chemistry
2010.0

Abstract

Hit optimization of the class of quinazoline containing histamine H(4) receptor (H(4)R) ligands resulted in a sulfonamide substituted analogue with high affinity for the H(4)R. This moiety leads to improved physicochemical properties and is believed to probe a distinct H(4)R binding pocket that was previously identified using pharmacophore modeling. By introducing a variety of sulfonamide substituents, the H(4)R affinity was optimized. The interaction of the new ligands, in combination with a set of previously published quinazoline compounds, was described by a QSAR equation. Pharmacological studies revealed that the sulfonamide analogues have excellent H(4)R affinity and behave as inverse agonists at the human H(4)R. In vivo evaluation of the potent 2-(6-chloro-2-(4-methylpiperazin-1-yl)quinazoline-4-amino)-N-phenylethanesulfonamide (54) (pK(i) = 8.31 +/- 0.10) revealed it to have anti-inflammatory activity in an animal model of acute inflammation.

Knowledge Graph

Similar Paper

Synthesis and QSAR of Quinazoline Sulfonamides As Highly Potent Human Histamine H<sub>4</sub> Receptor Inverse Agonists
Journal of Medicinal Chemistry 2010.0
Discovery of Quinazolines as Histamine H<sub>4</sub>Receptor Inverse Agonists Using a Scaffold Hopping Approach
Journal of Medicinal Chemistry 2008.0
Fragment Based Design of New H<sub>4</sub>Receptor−Ligands with Anti-inflammatory Properties in Vivo
Journal of Medicinal Chemistry 2008.0
Ligand based design of novel histamine H4 receptor antagonists; fragment optimization and analysis of binding kinetics
Bioorganic &amp; Medicinal Chemistry Letters 2012.0
2,4-Diaminopyrimidines as histamine H4 receptor ligands—Scaffold optimization and pharmacological characterization
Bioorganic &amp; Medicinal Chemistry 2009.0
Synthesis and structure–activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2004.0
(2-Arylethenyl)-1,3,5-triazin-2-amines as a novel histamine H4 receptor ligands
European Journal of Medicinal Chemistry 2015.0
Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands
Bioorganic &amp; Medicinal Chemistry 2019.0
Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands
European Journal of Medicinal Chemistry 2014.0
Rotationally Constrained 2,4-Diamino-5,6-disubstituted Pyrimidines: A New Class of Histamine H<sub>4</sub>Receptor Antagonists with Improved Druglikeness and in Vivo Efficacy in Pain and Inflammation Models
Journal of Medicinal Chemistry 2008.0