Acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: Synthesis, SAR, and in vivo antitumor activity

Bioorganic & Medicinal Chemistry Letters
2010.0

Abstract

Thirty-six novel acylurea connected straight chain hydroxamates were designed and synthesized. Structure-activity relationships (SAR) were established for the length of linear chain linker and substitutions on the benzoylurea group. Compounds 5g, 5i, 5n, and 19 showed 10-20-fold enhanced HDAC1 potency compared to SAHA. In general, the cellular potency pIC(50) (COLO205) correlates with enzymatic potency pIC(50) (HDAC1). Compound 5b (SB207), a structurally simple and close analogue to SAHA, is more potent against HDAC1 and HDAC6 compared to the latter. As a representative example of this series, good in vitro enzymatic and cellular potency plus an excellent pharmacokinetic profile has translated into better efficacy than SAHA in both prostate cancer (PC3) and colon cancer (HCT116) xenograft models.

Knowledge Graph

Similar Paper

Acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: Synthesis, SAR, and in vivo antitumor activity
Bioorganic & Medicinal Chemistry Letters 2010.0
N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors: Design, synthesis, SAR studies, and in vivo antitumor activity
Bioorganic & Medicinal Chemistry Letters 2009.0
Synthesis and Biological Evaluation of 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indoles as Potent Histone Deacetylase Inhibitors with Antitumor Activity in Vivo
Journal of Medicinal Chemistry 2012.0
Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors
European Journal of Medicinal Chemistry 2009.0
Design and synthesis of a new generation of substituted purine hydroxamate analogs as histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2016.0
Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Exploring the connection unit in the HDAC inhibitor pharmacophore model: Novel uracil-based hydroxamates
Bioorganic & Medicinal Chemistry Letters 2005.0
2-Aroylindoles and 2-Aroylbenzofurans with N-Hydroxyacrylamide Substructures as a Novel Series of Rationally Designed Histone Deacetylase Inhibitors
Journal of Medicinal Chemistry 2007.0
Novel amide derivatives as inhibitors of histone deacetylase: Design, synthesis and SAR
European Journal of Medicinal Chemistry 2009.0
Design, synthesis, and preliminary bioactivity studies of substituted purine hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors
MedChemComm 2014.0