Synthetic partial agonists reveal key steps in IP3 receptor activation

Nature Chemical Biology
2009.0

Abstract

Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are ubiquitous intracellular Ca2+ channels. IP(3) binding to the IP(3)-binding core (IBC) near the N terminus initiates conformational changes that lead to opening of a pore. The mechanisms underlying this process are unresolved. We synthesized 2-O-modified IP(3) analogs that are partial agonists of IP(3)R. These are similar to IP(3) in their interactions with the IBC, but they are less effective than IP(3) in rearranging the relationship between the IBC and the N-terminal suppressor domain (SD), and they open the channel at slower rates. IP(3)R with a mutation in the SD occupying a position similar to the 2-O substituent of the partial agonists has a reduced open probability that is similar for full and partial agonists. Bulky or charged substituents from either the ligand or the SD therefore block obligatory coupling of the IBC and the SD. Analysis of DeltaG for ligand binding shows that IP(3) is recognized by the IBC and conformational changes then propagate entirely via the SD to the pore.

Knowledge Graph

Similar Paper

Synthetic partial agonists reveal key steps in IP3 receptor activation
Nature Chemical Biology 2009.0
Synthesis of Adenophostin A Analogues Conjugating an Aromatic Group at the 5‘-Position as Potent IP<sub>3</sub> Receptor Ligands
Journal of Medicinal Chemistry 2006.0
Contribution of Phosphates and Adenine to the Potency of Adenophostins at the IP<sub>3</sub>Receptor: Synthesis of All Possible Bisphosphates of Adenophostin A
Journal of Medicinal Chemistry 2012.0
A Systematic Study of C-Glucoside Trisphosphates as myo-Inositol Trisphosphate Receptor Ligands. Synthesis of β-C-Glucoside Trisphosphates Based on the Conformational Restriction Strategy
Journal of Medicinal Chemistry 2006.0
A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate
MedChemComm 2018.0
Both <scp>d</scp>- and <scp>l</scp>-Glucose Polyphosphates Mimic <scp>d</scp>-myo-Inositol 1,4,5-Trisphosphate: New Synthetic Agonists and Partial Agonists at the Ins(1,4,5)P<sub>3</sub> Receptor
Journal of Medicinal Chemistry 2020.0
<scp>d</scp>-chiro-Inositol Ribophostin: A Highly Potent Agonist of <scp>d</scp>-myo-Inositol 1,4,5-Trisphosphate Receptors: Synthesis and Biological Activities
Journal of Medicinal Chemistry 2020.0
Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist
Journal of Medicinal Chemistry 2020.0
Rational Design of Partial Agonists for the Muscarinic M<sub>1</sub>Acetylcholine Receptor
Journal of Medicinal Chemistry 2015.0
Coupling ligand structure to specific conformational switches in the β2-adrenoceptor
Nature Chemical Biology 2006.0