Further delineation of hydrophobic binding sites in dopamine D2/D3 receptors for N-4 substituents on the piperazine ring of the hybrid template 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol

Bioorganic & Medicinal Chemistry
2010.0

Abstract

Here we report a structure-activity relationship (SAR) study of analogues of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol. Our SAR is focused on introduction of various substitutions in the piperazine ring of the hybrid template. The goal behind this study is to delineate the nature of the binding pocket for N-aryl substitution in the piperazine ring by observing the effect of various hydrophobic and other heteroaromatic substitutions on binding affinity (K(i)), as measured with tritiated spiperone and HEK-293 cells expressing either D(2) or D(3) receptors. Functional activity of selected compounds was assessed with the GTPgammaS binding assay. Compound 8d was the most selective for the D(3) receptor in the spiperone binding assay. An interesting similarity in binding affinity was observed between isoquinoline derivative D-301 and the 2-substituted pyridine derivative 8d, suggesting the importance of relative spatial relationships between the N-atom of the ligand and the molecular determinants of the binding pocket in D(2)/D(3) receptors. Functional activity assays demonstrated high potency and selectivity of (+)-8a and (-)-28b (D(2)/D(3) (ratio of EC(50)): 105 and 202, respectively) for the D(3) receptor and both compounds were more selective compared to the reference drug ropinirole (D(2)/D(3) (ratio of EC(50)): 29.5).

Knowledge Graph

Similar Paper

Further delineation of hydrophobic binding sites in dopamine D2/D3 receptors for N-4 substituents on the piperazine ring of the hybrid template 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol
Bioorganic & Medicinal Chemistry 2010.0
Further Structure–Activity Relationships Study of Hybrid 7-{[2-(4-Phenylpiperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol Analogues: Identification of a High-Affinity D3-Preferring Agonist with Potent in Vivo Activity with Long Duration of Action
Journal of Medicinal Chemistry 2008.0
Investigation of various N-heterocyclic substituted piperazine versions of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol: Effect on affinity and selectivity for dopamine D3 receptor
Bioorganic & Medicinal Chemistry 2009.0
Modification of agonist binding moiety in hybrid derivative 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-1-ol/-2-amino versions: Impact on functional activity and selectivity for dopamine D2/D3 receptors
Bioorganic & Medicinal Chemistry 2013.0
Bioisosteric Heterocyclic Versions of 7-{[2-(4-Phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: Identification of Highly Potent and Selective Agonists for Dopamine D3 Receptor with Potent in Vivo Activity
Journal of Medicinal Chemistry 2008.0
Development of (S)-N<sup>6</sup>-(2-(4-(Isoquinolin-1-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and Its Analogue as a D3 Receptor Preferring Agonist: Potent in Vivo Activity in Parkinson’s Disease Animal Models
Journal of Medicinal Chemistry 2010.0
Structure–Activity Relationship Study ofN<sup>6</sup>-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Development of Highly Selective D3 Dopamine Receptor Agonists along with a Highly Potent D2/D3 Agonist and Their Pharmacological Characterization
Journal of Medicinal Chemistry 2012.0
Synthesis of 3-(3-hydroxyphenyl)pyrrolidine dopamine D3 receptor ligands with extended functionality for probing the secondary binding pocket
Bioorganic &amp; Medicinal Chemistry Letters 2018.0
Structure−Affinity Relationship Study on N-[4-(4-Arylpiperazin-1-yl)butyl]arylcarboxamides as Potent and Selective Dopamine D<sub>3</sub> Receptor Ligands
Journal of Medicinal Chemistry 2002.0
Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D<sub>2</sub>/D<sub>3</sub>Receptor Agonist Selectivity
Journal of Medicinal Chemistry 2016.0