Clinical Pharmacodynamics of Cefepime in Patients Infected with Pseudomonas aeruginosa

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

We evaluated cefepime exposures in patients infected with Pseudomonas aeruginosa to identify the pharmacodynamic relationship predictive of microbiological response. Patients with non-urinary tract P. aeruginosa infections and treated with cefepime were included. Free cefepime exposures were estimated by using a validated population pharmacokinetic model. P. aeruginosa MICs were determined by Etest and pharmacodynamic indices (the percentage of the dosing interval that the free drug concentration remains above the MIC of the infecting organism [fT > MIC], the ratio of the minimum concentration of free drug to the MIC [fC(min)/MIC], and the ratio of the area under the concentration-time curve for free drug to the MIC [fAUC/MIC]) were calculated for each patient. Classification and regression tree analysis was used to partition the pharmacodynamic parameters for prediction of the microbiological response. Monte Carlo simulation was utilized to determine the optimal dosing regimens needed to achieve the pharmacodynamic target. Fifty-six patients with pneumonia (66.1%), skin and skin structure infections (SSSIs) (25%), and bacteremia (8.9%) were included. Twenty-four (42.9%) patients failed cefepime therapy. The MICs ranged from 0.75 to 96 microg/ml, resulting in median fT > MIC, fC(m)(in)/MIC, and fAUC/MIC exposures of 100% (range, 0.8 to 100%), 4.3 (range, 0.1 to 27.3), and 206.2 (range, 4.2 to 1,028.7), respectively. Microbiological failure was associated with an fT > MIC of < or =60% (77.8% failed cefepime therapy when fT > MIC was < or =60%, whereas 36.2% failed cefepime therapy when fT > MIC was >60%; P = 0.013). A similar fT > MIC target of < or =63.9% (P = 0.009) was identified when skin and skin structure infections were excluded. While controlling for the SSSI source (odds ratio [OR], 0.18 [95% confidence interval, 0.03 to 1.19]; P = 0.07) and combination therapy (OR, 2.15 [95% confidence interval, 0.59 to 7.88]; P = 0.25), patients with fT > MIC values of < or =60% were 8.1 times (95% confidence interval, 1.2 to 55.6 times) more likely to experience a poor microbiological response. Cefepime doses of at least 2 g every 8 h are required to achieve this target against CLSI-defined susceptible P. aeruginosa organisms in patients with normal renal function. In patients with non-urinary tract infections caused by P. aeruginosa, achievement of cefepime exposures of >60% fT > MIC will minimize the possibility of a poor microbiological response.

Knowledge Graph

Similar Paper

Clinical Pharmacodynamics of Cefepime in Patients Infected with Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2010.0
Clinical Pharmacodynamics of Meropenem in Patients with Lower Respiratory Tract Infections
Antimicrobial Agents and Chemotherapy 2007.0
Comparison of the Activity of a Human Simulated, High-Dose, Prolonged Infusion of Meropenem against Klebsiella pneumoniae Producing the KPC Carbapenemase versus That against Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model
Antimicrobial Agents and Chemotherapy 2010.0
Population Pharmacokinetics and Pharmacodynamics of Continuous versus Short-Term Infusion of Imipenem-Cilastatin in Critically Ill Patients in a Randomized, Controlled Trial
Antimicrobial Agents and Chemotherapy 2007.0
Pharmacodynamic Modeling of Aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii : Identifying Dosing Regimens To Suppress Resistance Development
Antimicrobial Agents and Chemotherapy 2008.0
Pharmacodynamic Characterization of Ceftobiprole in Experimental Pneumonia Caused by Phenotypically Diverse Staphylococcus aureus Strains
Antimicrobial Agents and Chemotherapy 2008.0
Pharmacodynamics of Tigecycline against Phenotypically Diverse Staphylococcus aureus Isolates in a Murine Thigh Model
Antimicrobial Agents and Chemotherapy 2009.0
Systematic Comparison of the Population Pharmacokinetics and Pharmacodynamics of Piperacillin in Cystic Fibrosis Patients and Healthy Volunteers
Antimicrobial Agents and Chemotherapy 2007.0
In Vivo Pharmacodynamic Profile of Tigecycline against Phenotypically Diverse Escherichia coli and Klebsiella pneumoniae Isolates
Antimicrobial Agents and Chemotherapy 2009.0
Semimechanistic Pharmacokinetic-Pharmacodynamic Model with Adaptation Development for Time-Kill Experiments of Ciprofloxacin against Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2010.0