Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

Methods for increasing the proteolytic stability of EFK17 (EFKRIVQRIKDFLRNLV), a new peptide sequence with antimicrobial properties derived from LL-37, were evaluated. EFK17 was modified by four d-enantiomer or tryptophan (W) substitutions at known protease cleavage sites as well as by terminal amidation and acetylation. The peptide variants were studied in terms of proteolytic resistance, antibacterial potency, and cytotoxicity but also in terms their adsorption at model lipid membranes, liposomal leakage generation, and secondary-structure behavior. The W substitutions resulted in a marked reduction in the proteolytic degradation caused by human neutrophil elastase, Staphylococcus aureus aureolysin, and V8 protease but not in the degradation caused by Pseudomonas aeruginosa elastase. For the former two endoproteases, amidation and acetylation of the terminals also reduced proteolytic degradation but only when used in combination with W substitutions. The d-enantiomer substitutions rendered the peptides indigestible by all four proteases; however, those peptides displayed little antimicrobial potency. The W- and end-modified peptides, on the other hand, showed an increased bactericidal potency compared to that of the native peptide sequence, coupled with a moderate cytotoxicity that was largely absent in serum. The bactericidal, cytotoxic, and liposome lytic properties correlated with each other as well as with the amount of peptide adsorbed at the lipid membrane and the extent of helix formation associated with the adsorption. The lytic properties of the W-substituted peptides were less impaired by increased ionic strength, presumably by a combination of W-mediated stabilization of the largely amphiphilic helix conformation and a nonelectrostatic W affinity for the bilayer interface. Overall, W substitutions constitute an interesting means to reduce the proteolytic susceptibility of EFK17 while also improving antimicrobial performance.

Knowledge Graph

Similar Paper

Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37
Antimicrobial Agents and Chemotherapy 2009.0
Rationally Modified Antimicrobial Peptides from the N-Terminal Domain of Human RNase 3 Show Exceptional Serum Stability
Journal of Medicinal Chemistry 2021.0
Improving the Antimicrobial Performance of Amphiphilic Cationic Antimicrobial Peptides Using Glutamic Acid Full-Scan and Positive Charge Compensation Strategies
Journal of Medicinal Chemistry 2022.0
Rational Substitution of ε-Lysine for α-Lysine Enhances the Cell and Membrane Selectivity of Pore-Forming Melittin
Journal of Medicinal Chemistry 2020.0
Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria
Journal of Medicinal Chemistry 2019.0
Biological evaluation of Tyr6 and Ser7 modified drosocin analogues
Bioorganic & Medicinal Chemistry Letters 2005.0
Insights into the Antimicrobial Activity and Cytotoxicity of Engineered α-Helical Peptide Amphiphiles
Journal of Medicinal Chemistry 2016.0
Lysine-Tethered Stable Bicyclic Cationic Antimicrobial Peptide Combats Bacterial Infection in Vivo
Journal of Medicinal Chemistry 2022.0
De Novo Antimicrobial Peptides with Low Mammalian Cell Toxicity
Journal of Medicinal Chemistry 1996.0
Characterization of Antimicrobial, Cytotoxic, and Antiendotoxin Properties of Short Peptides with Different Hydrophobic Amino Acids at “a” and “d” Positions of a Heptad Repeat Sequence
Journal of Medicinal Chemistry 2013.0