Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria

Journal of Medicinal Chemistry
2019.0

Abstract

Poor proteolytic resistance is an urgent problem to be solved in the clinical application of antimicrobial peptides (AMPs), yet common solutions, such as complicated chemical modifications and utilization of d-amino acids, greatly increase the difficulty and cost of producing AMPs. In this work, a set of novel peptides was synthesized based on an antitrypsin/antichymotrypsin hydrolytic peptide structure unit (XYPX) n (X represents I, L, and V; Y represents R and K), which was designed using a systematic natural amino acid arrangement. Of these peptides, 16 with seven repeat units had the highest average selectivity index (GMSI = 99.07) for all of the Gram-negative bacteria tested and remained highly effective in combating Escherichia coli infection in vivo. Importantly, 16 also had dramatic resistance to a high concentration of trypsin/chymotrypsin hydrolysis and exerted bactericidal activity through a membrane-disruptive mechanism. Overall, these findings provide new approaches for the development of antiprotease hydrolytic peptides that target Gram-negative bacteria.

Knowledge Graph

Similar Paper

Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria
Journal of Medicinal Chemistry 2019.0
Design of Trp-Rich Dodecapeptides with Broad-Spectrum Antimicrobial Potency and Membrane-Disruptive Mechanism
Journal of Medicinal Chemistry 2019.0
Discovery of Trp-His and His-Arg Analogues as New Structural Classes of Short Antimicrobial Peptides
Journal of Medicinal Chemistry 2009.0
Rational Avoidance of Protease Cleavage Sites and Symmetrical End-Tagging Significantly Enhances the Stability and Therapeutic Potential of Antimicrobial Peptides
Journal of Medicinal Chemistry 2020.0
Novel Broad-Spectrum Antimicrobial Peptide Derived from Anoplin and Its Activity on Bacterial Pneumonia in Mice
Journal of Medicinal Chemistry 2021.0
Lysine-Tethered Stable Bicyclic Cationic Antimicrobial Peptide Combats Bacterial Infection in Vivo
Journal of Medicinal Chemistry 2022.0
Improving the Antimicrobial Performance of Amphiphilic Cationic Antimicrobial Peptides Using Glutamic Acid Full-Scan and Positive Charge Compensation Strategies
Journal of Medicinal Chemistry 2022.0
Novel β-Hairpin Antimicrobial Peptides Containing the β-Turn Sequence of -RRRF- Having High Cell Selectivity and Low Incidence of Drug Resistance
Journal of Medicinal Chemistry 2022.0
Small Amphiphilic Peptides: Activity Against a Broad Range of Drug-Resistant Bacteria and Structural Insight into Membranolytic Properties
Journal of Medicinal Chemistry 2022.0
Antimicrobial Activity of a Halocidin-Derived Peptide Resistant to Attacks by Proteases
Antimicrobial Agents and Chemotherapy 2010.0