Pyrosequencing Using the Single-Nucleotide Polymorphism Protocol for Rapid Determination of TEM- and SHV-Type Extended-Spectrum β-Lactamases in Clinical Isolates and Identification of the Novel β-Lactamase Genes bla SHV-48 , bla SHV-105 , and bla TEM-155

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

TEM- and SHV-type extended-spectrum beta-lactamases (ESBLs) are the most common ESBLs found in the United States and are prevalent throughout the world. Amino acid substitutions at a number of positions in TEM-1 lead to the ESBL phenotype, although substitutions at residues 104 (E to K), 164 (R to S or H), 238 (G to S), and 240 (E to K) appear to be particularly important in modifying the spectrum of activity of the enzyme. The SHV-1-derived ESBLs are a less diverse collection of enzymes; however, the majority of amino acid substitutions resulting in an ESBL mirror those seen in the TEM-1-derived enzymes. Pyrosequencing by use of the single-nucleotide polymorphism (SNP) protocol was applied to provide sequence data at positions critical for the ESBL phenotype spanning the bla(TEM) and bla(SHV) genes. Three novel beta-lactamases are described: the ESBLs TEM-155 (Q39K, R164S, E240K) and SHV-105 (I8F, R43S, G156D, G238S, E240K) and a non-ESBL, SHV-48 (V119I). The ceftazidime, ceftriaxone, and aztreonam MICs for an Escherichia coli isolate expressing bla(SHV-105) were >128, 128, and >128 microg/ml, respectively. Likewise, the ceftazidime, ceftriaxone, and aztreonam MICs for an E. coli isolate expressing bla(TEM-155) were >128, 64, and > 128 microg/ml, respectively. Pyrosequence analysis determined the true identity of the beta-lactamase on plasmid R1010 to be SHV-11 rather than SHV-1, as previously reported. Pyrosequencing is a real-time sequencing-by-synthesis approach that was applied to SNP detection for TEM- and SHV-type ESBL identification and represents a robust tool for rapid sequence determination that may have a place in the clinical setting.

Knowledge Graph

Similar Paper

Pyrosequencing Using the Single-Nucleotide Polymorphism Protocol for Rapid Determination of TEM- and SHV-Type Extended-Spectrum β-Lactamases in Clinical Isolates and Identification of the Novel β-Lactamase Genes bla <sub>SHV-48</sub> , bla <sub>SHV-105</sub> , and bla <sub>TEM-155</sub>
Antimicrobial Agents and Chemotherapy 2009.0
Evolution of TEM-Type Enzymes: Biochemical and Genetic Characterization of Two New Complex Mutant TEM Enzymes, TEM-151 and TEM-152, from a Single Patient
Antimicrobial Agents and Chemotherapy 2007.0
TEM-168, a Heretofore Laboratory-Derived TEM β-Lactamase Variant Found in an Escherichia coli Clinical Isolate
Antimicrobial Agents and Chemotherapy 2009.0
Characterization and Sequence Analysis of Extended-Spectrum-β-Lactamase-Encoding Genes from Escherichia coli, Klebsiella pneumoniae , and Proteus mirabilis Isolates Collected during Tigecycline Phase 3 Clinical Trials
Antimicrobial Agents and Chemotherapy 2009.0
TEM-158 (CMT-9), a New Member of the CMT-Type Extended-Spectrum β-Lactamases
Antimicrobial Agents and Chemotherapy 2007.0
Fitness Trade-Offs inbla<sub>TEM</sub>Evolution
Antimicrobial Agents and Chemotherapy 2008.0
Biochemical Study of a New Inhibitor-Resistant β-Lactamase, SHV-84, Produced by a Clinical Escherichia coli Strain
Antimicrobial Agents and Chemotherapy 2010.0
High Diversity of Extended-Spectrum β-Lactamases in Escherichia coli Isolates from Italian Broiler Flocks
Antimicrobial Agents and Chemotherapy 2010.0
Molecular and Biochemical Characterization of SHV-56, a Novel Inhibitor-Resistant β-Lactamase fromKlebsiella pneumoniae
Antimicrobial Agents and Chemotherapy 2008.0
Detection of a New SHV-Type Extended-Spectrum β-Lactamase, SHV-31, in a Klebsiella pneumoniae Strain Causing a Large Nosocomial Outbreak in The Netherlands
Antimicrobial Agents and Chemotherapy 2007.0