Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation

Bioorganic & Medicinal Chemistry
2011.0

Abstract

A new series of tacrine-multialkoxybenzene hybrids (9a-9n) were designed, synthesized and evaluated as dual inhibitors of cholinesterases (ChEs) and self-induced β-amyloid (Aβ) aggregation. All the synthesized compounds had high acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity with IC₅₀ values at the nanomolar range, which were much better than tacrine alone. A Lineweaver-Burk plot and molecular modeling study showed that these hybrids targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, compounds 9a-9f with methylenedioxybenzene moiety showed higher self-induced Aβ aggregation inhibitory activity than a reference compound, curcumin. These compounds could be selected as multi-potent agents for further investigation to treat AD.

Knowledge Graph

Similar Paper

Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation
Bioorganic & Medicinal Chemistry 2011.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease
European Journal of Medicinal Chemistry 2016.0
Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase
Bioorganic & Medicinal Chemistry 2014.0
Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors
European Journal of Medicinal Chemistry 2011.0
Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease
European Journal of Medicinal Chemistry 2013.0
Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2014.0
Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2013.0
Pyrano[3,2-c]quinoline−6-Chlorotacrine Hybrids as a Novel Family of Acetylcholinesterase- and β-Amyloid-Directed Anti-Alzheimer Compounds
Journal of Medicinal Chemistry 2009.0
Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs
MedChemComm 2015.0
Novel Tacrine–Benzofuran Hybrids as Potent Multitarget-Directed Ligands for the Treatment of Alzheimer’s Disease: Design, Synthesis, Biological Evaluation, and X-ray Crystallography
Journal of Medicinal Chemistry 2016.0