Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors

European Journal of Medicinal Chemistry
2011.0

Abstract

A series of dual binding site acetylcholinesterase (AChE) inhibitors have been designed, synthesized, and tested for their ability to inhibit AChE, butyrylcholinesterase (BChE), AChE-induced and self-induced β-amyloid (Aβ) aggregation. The new hybrids consist of a unit of 1-azabenzanthrone and a tacrine or its congener, connected through an oligomethylene linker containing an amine group at variable position. These hybrids exhibit high AChE inhibitory activity with IC(50) values in the nanomolar range in most cases. Moreover, five out of the 12 hybrids of this series, particularly those bearing a tetrahydroacridine moiety, exhibit a significant in vitro inhibitory activity toward the AChE-induced and self-induced Aβ aggregation, which makes them promising anti-Alzheimer drug candidates.

Knowledge Graph

Similar Paper

Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors
European Journal of Medicinal Chemistry 2011.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation
Bioorganic & Medicinal Chemistry 2011.0
Pyrano[3,2-c]quinoline−6-Chlorotacrine Hybrids as a Novel Family of Acetylcholinesterase- and β-Amyloid-Directed Anti-Alzheimer Compounds
Journal of Medicinal Chemistry 2009.0
Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase
Bioorganic & Medicinal Chemistry 2014.0
Novel Donepezil-Based Inhibitors of Acetyl- and Butyrylcholinesterase and Acetylcholinesterase-Induced β-Amyloid Aggregation
Journal of Medicinal Chemistry 2008.0
Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies
European Journal of Medicinal Chemistry 2014.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease
European Journal of Medicinal Chemistry 2016.0
O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation
Bioorganic & Medicinal Chemistry 2012.0
Design, synthesis and evaluation of novel tacrine–coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease
European Journal of Medicinal Chemistry 2013.0
Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs
MedChemComm 2015.0