4-Oxo-1,4-dihydropyridines as Selective CB2Cannabinoid Receptor Ligands: Structural Insights into the Design of a Novel Inverse Agonist Series

Journal of Medicinal Chemistry
2010.0

Abstract

Growing evidence shows that CB(2) receptor is an attractive therapeutic target. Starting from a series of 4-oxo-1,4-dihydroquinoline-3-carboxamide as selective CB(2) agonists, we describe here the medicinal chemistry approach leading to the development of CB(2) receptor inverse agonists with a 4-oxo-1,4-dihydropyridine scaffold. The compounds reported here show high affinity and potency at the CB(2) receptor while showing only modest affinity for the centrally expressed CB(1) cannabinoid receptor. Further, we found that the functionality of this series is controlled by its C-6 substituent because agonists bear a methyl or a tert-butyl group and inverse agonists, a phenyl or 4-chlorophenyl group, respectively. Finally, in silico studies suggest that the C-6 substituent could modulate the conformation of W6.48 known to be critical in GPCR activation.

Knowledge Graph

Similar Paper

4-Oxo-1,4-dihydropyridines as Selective CB<sub>2</sub>Cannabinoid Receptor Ligands: Structural Insights into the Design of a Novel Inverse Agonist Series
Journal of Medicinal Chemistry 2010.0
7-Oxo-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxamides as Selective CB<sub>2</sub>Cannabinoid Receptor Ligands: Structural Investigations around a Novel Class of Full Agonists
Journal of Medicinal Chemistry 2012.0
Novel 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New CB<sub>2</sub>Cannabinoid Receptors Agonists:  Synthesis, Pharmacological Properties and Molecular Modeling
Journal of Medicinal Chemistry 2006.0
Pharmacomodulations around the 4-Oxo-1,4-dihydroquinoline-3-carboxamides, a Class of Potent CB<sub>2</sub>-Selective Cannabinoid Receptor Ligands:  Consequences in Receptor Affinity and Functionality
Journal of Medicinal Chemistry 2007.0
Design, Synthesis, and Pharmacological Properties of New Heteroarylpyridine/Heteroarylpyrimidine Derivatives as CB<sub>2</sub> Cannabinoid Receptor Partial Agonists
Journal of Medicinal Chemistry 2013.0
New pyridazinone-4-carboxamides as new cannabinoid receptor type-2 inverse agonists: Synthesis, pharmacological data and molecular docking
European Journal of Medicinal Chemistry 2017.0
Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists
European Journal of Medicinal Chemistry 2016.0
4-Oxo-1,4-dihydropyridines as Selective CB<sub>2</sub> Cannabinoid Receptor Ligands Part 2: Discovery of New Agonists Endowed with Protective Effect Against Experimental Colitis
Journal of Medicinal Chemistry 2012.0
Design, Synthesis, and Biological Evaluation of New 1,8-Naphthyridin-4(1H)-on-3-carboxamide and Quinolin-4(1H)-on-3-carboxamide Derivatives as CB<sub>2</sub>Selective Agonists
Journal of Medicinal Chemistry 2006.0
Conformational Restriction Leading to a Selective CB<sub>2</sub> Cannabinoid Receptor Agonist Orally Active Against Colitis
ACS Medicinal Chemistry Letters 2015.0