Outer Membrane Protein STM3031 (Ail/OmpX-Like Protein) Plays a Key Role in the Ceftriaxone Resistance of Salmonella enterica Serovar Typhimurium

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

Previously, the putative outer membrane protein STM3031 has been correlated with ceftriaxone resistance in Salmonella enterica serovar Typhimurium. In this study, this protein was almost undetectable in the ceftriaxone-susceptible strain 01-4, but its levels were increased in 01-4 isogenic strains for which MICs were higher. The stm3031 gene deletion mutant, R200(Deltastm3031), was generated and showed >64-fold lower ceftriaxone resistance than R200, supporting a key role for STM3031 in ceftriaxone resistance. To investigate which outer membrane protein(s) was associated with resistance, the outer membrane protein profiles of 01-4, R200, and R200(Deltastm3031) were compared proteomically. Nine proteins were identified as altered. The expression levels of AcrA, TolC, STM3031, STM1530, VacJ, and Psd in R200 were increased; those of OmpC, OmpD, and OmpW were decreased. The expression levels of OmpD, OmpW, STM1530, VacJ, and Psd, but not those of OmpC, AcrA, and TolC, in R200(Deltastm3031) were returned to the levels in strain 01-4. Furthermore, the genes' mRNA levels correlated with their protein levels when the three strains were compared. The detection of higher AcrB levels, linked to higher acrB, acrD, and acrF mRNA levels, in strain R200 than in strains 01-4 and R200(Deltastm3031) suggests that AcrB, AcrD, and AcrF participate in ceftriaxone resistance. Taken together with the location of STM3031 in the outer membrane, these results suggest that STM3031 plays a key role in ceftriaxone resistance, probably by reducing permeability via a decreased porin OmpD level and enhancing export via increased AcrD efflux pump activity.

Knowledge Graph

Similar Paper

Outer Membrane Protein STM3031 (Ail/OmpX-Like Protein) Plays a Key Role in the Ceftriaxone Resistance of Salmonella enterica Serovar Typhimurium
Antimicrobial Agents and Chemotherapy 2009.0
ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium
Antimicrobial Agents and Chemotherapy 2008.0
Contribution of Target Gene Mutations and Efflux to Decreased Susceptibility of Salmonella enterica Serovar Typhimurium to Fluoroquinolones and Other Antimicrobials
Antimicrobial Agents and Chemotherapy 2007.0
Single Nucleotide Polymorphism Analysis of the Major Tripartite Multidrug Efflux Pump of Escherichia coli : Functional Conservation in Disparate Animal Reservoirs despite Exposure to Antimicrobial Chemotherapy
Antimicrobial Agents and Chemotherapy 2010.0
Outbreak of Meropenem-ResistantSerratia marcescensComediated by Chromosomal AmpC β-Lactamase Overproduction and Outer Membrane Protein Loss
Antimicrobial Agents and Chemotherapy 2010.0
RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB , Which Is Inhibited by Chlorpromazine
Antimicrobial Agents and Chemotherapy 2008.0
An Early Response to Environmental Stress Involves Regulation of OmpX and OmpF, Two Enterobacterial Outer Membrane Pore-Forming Proteins
Antimicrobial Agents and Chemotherapy 2007.0
H-NS Modulates Multidrug Resistance of Salmonella enterica Serovar Typhimurium by Repressing Multidrug Efflux Genes acrEF
Antimicrobial Agents and Chemotherapy 2009.0
A mec A -Negative Strain of Methicillin-Resistant S taphylococcus aureus with High-Level β-Lactam Resistance Contains Mutations in Three Genes
Antimicrobial Agents and Chemotherapy 2010.0
Mechanism and Fitness Costs of PR-39 Resistance in Salmonella enterica Serovar Typhimurium LT2
Antimicrobial Agents and Chemotherapy 2008.0