Impact of Novel Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutations P119S and T165A on 4′-Ethynylthymidine Analog Resistance Profile

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

2',3'-Didehydro-3'-deoxy-4'-ethynylthymidine (4'-Ed4T), a derivative of stavudine (d4T), has potent activity against human immunodeficiency virus and is much less inhibitory to mitochondrial DNA synthesis and cell growth than its progenitor, d4T. 4'-Ed4T triphosphate was a better reverse transcriptase (RT) inhibitor than d4T triphosphate, due to the additional binding of the 4'-ethynyl group at a presumed hydrophobic pocket in the RT active site. Previous in vitro selection for 4'-Ed4T-resistant viral strains revealed M184V and P119S/T165A/M184V mutations on days 26 and 81, respectively; M184V and P119S/T165A/M184V conferred 3- and 130-fold resistance to 4'-Ed4T, respectively. We investigated the relative contributions of these mutations, engineered into the strain NL4-3 background, to drug resistance, RT activity, and viral growth. Viral variants with single RT mutations (P119S or T165A) did not show resistance to 4'-Ed4T; however, M184V and P119S/T165A/M184V conferred three- and fivefold resistance, respectively, compared with that of the wild-type virus. The P119S/M184V and T165A/M184V variants showed about fourfold resistance to 4'-Ed4T. The differences in the growth kinetics of the variants were not more than threefold. The purified RT of mutants with the P119S/M184V and T165A/M184V mutations were inhibited by 4'-Ed4TTP with 8- to 13-fold less efficiency than wild-type RT. M184V may be the primary resistance-associated mutation of 4'-Ed4T, and P119S and T165A are secondary mutations. On the basis of our findings and the results of structural modeling, a virus with a high degree of resistance to 4'-Ed4T (e.g., more than 50-fold resistance) will be difficult to develop. The previously observed 130-fold resistance of the virus with P119S/T165A/M184V to 4'-Ed4T may be partly due to mutations both in the RT sequence and outside the RT sequence.

Knowledge Graph

Similar Paper

Impact of Novel Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutations P119S and T165A on 4′-Ethynylthymidine Analog Resistance Profile
Antimicrobial Agents and Chemotherapy 2009.0
Mechanism of Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase by a Stavudine Analogue, 4′-Ethynyl Stavudine Triphosphate
Antimicrobial Agents and Chemotherapy 2008.0
Intracellular Metabolism and Persistence of the Anti-Human Immunodeficiency Virus Activity of 2′,3′-Didehydro-3′-Deoxy-4′-Ethynylthymidine, a Novel Thymidine Analog
Antimicrobial Agents and Chemotherapy 2007.0
Human Immunodeficiency Virus Type 1 Recombinant Reverse Transcriptase Enzymes Containing the G190A and Y181C Resistance Mutations Remain Sensitive to Etravirine
Antimicrobial Agents and Chemotherapy 2009.0
Combination of V106I and V179D Polymorphic Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confers Resistance to Efavirenz and Nevirapine but Not Etravirine
Antimicrobial Agents and Chemotherapy 2010.0
Synthesis, Anti-HIV Activity, and Molecular Mechanism of Drug Resistance of <scp>l</scp>-2‘,3‘-Didehydro-2‘,3‘-dideoxy-2‘-fluoro-4‘-thionucleosides
Journal of Medicinal Chemistry 2003.0
Human Immunodeficiency Virus Type 1 Isolates with the Reverse Transcriptase (RT) Mutation Q145M Retain Nucleoside and Nonnucleoside RT Inhibitor Susceptibility
Antimicrobial Agents and Chemotherapy 2009.0
Novel Drug Resistance Pattern Associated with the Mutations K70G and M184V in Human Immunodeficiency Virus Type 1 Reverse Transcriptase
Antimicrobial Agents and Chemotherapy 2007.0
Potent Inhibitors Active against HIV Reverse Transcriptase with K101P, a Mutation Conferring Rilpivirine Resistance
ACS Medicinal Chemistry Letters 2015.0
Antiviral Activity of MK-4965, a Novel Nonnucleoside Reverse Transcriptase Inhibitor
Antimicrobial Agents and Chemotherapy 2009.0