Synthesis and SAR-study for novel arylpiperazine derivatives of 5-arylidenehydantoin with α1-adrenoceptor antagonistic properties

Bioorganic & Medicinal Chemistry
2012.0

Abstract

The study is focused on a series of 5-arylidenehydantoin derivatives with a phenylpiperazine-hydroxypropyl fragment at N3 of the hydantoin ring. The compounds were assessed on their affinity for α(1)-adrenoceptors and evaluated in functional bioassays for their antagonistic properties. Crystal structures of (Z)-5-(4-chlorobenzylidene)-3-(3-(4-(2-ethoxyphenyl)piperazin-1-yl)-2-hydroxypropyl)imidazolidine-2,4-dione (7) and hydrochloride of (Z)-5-(4-chlorobenzylidene)-3-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)imidazolidine-2,4-dione (10a) were solved using the X-ray diffraction method. Classical molecular mechanics (MMFFs force field, MCMM, MacroModel) were used to predict 3D structure of compounds 5a-18a using a crystal structure of 7. SAR analysis was performed on the basis of Barbaro's pharmacophore model and structural properties of previously investigated α(1)-adrenoceptor antagonists possessing a hydantoin fragment. Most of the compounds exhibited significant affinities for α(1)-ARs in nanomolar range (40-290 nM). The highest activities (K(i)<75 nM) were observed for compounds possessing a 2-alkoxyphenylpiperazine fragment and two methoxy substituents at the benzylidene moiety. The results indicated that chemical properties, number and positions of substituents at the 5-arylidene fragment influenced the power of α(1)-affinities as follows: 3,4-di CH(3)O>2,4-di CH(3)O>4-Cl>2,3-di CH(3)O>H>4-N(CH(3))(2).

Knowledge Graph

Similar Paper

Synthesis and SAR-study for novel arylpiperazine derivatives of 5-arylidenehydantoin with α1-adrenoceptor antagonistic properties
Bioorganic &amp; Medicinal Chemistry 2012.0
Pharmacophore models based studies on the affinity and selectivity toward 5-HT1A with reference to α1-adrenergic receptors among arylpiperazine derivatives of phenytoin
Bioorganic &amp; Medicinal Chemistry 2011.0
Synthesis, α1-adrenoceptor antagonist activity, and SAR study of novel arylpiperazine derivatives of phenytoin
Bioorganic &amp; Medicinal Chemistry 2008.0
Synthesis and biological affinity of new imidazo- and indol-arylpiperazine derivatives: Further validation of a pharmacophore model for α1-adrenoceptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives
European Journal of Medicinal Chemistry 2014.0
α<sub>1</sub>-Adrenoceptor Antagonists. 4. Pharmacophore-Based Design, Synthesis, and Biological Evaluation of New Imidazo-, Benzimidazo-, and Indoloarylpiperazine Derivatives
Journal of Medicinal Chemistry 2002.0
Design, synthesis and pharmacological evaluation of new 1-[3-(4-arylpiperazin-1-yl)-2-hydroxy-propyl]-3,3-diphenylpyrrolidin-2-one derivatives with antiarrhythmic, antihypertensive, and α-adrenolytic activity
European Journal of Medicinal Chemistry 2009.0
Antiarrhythmic properties of phenylpiperazine derivatives of phenytoin with α1-adrenoceptor affinities
Bioorganic &amp; Medicinal Chemistry 2012.0
α1-Adrenoceptor antagonists. 5. Pyridazinone-arylpiperazines. Probing the influence on affinity and selectivity of both ortho-Alkoxy groups at the arylpiperazine moiety and cyclic substituents at the pyridazinone nucleus
Bioorganic &amp; Medicinal Chemistry Letters 2003.0
α<sub>1</sub>-Adrenoceptor Antagonists. 6. Structural Optimization of Pyridazinone−Arylpiperazines. Study of the Influence on Affinity and Selectivity of Cyclic Substituents at the Pyridazinone Ring and Alkoxy Groups at the Arylpiperazine Moiety
Journal of Medicinal Chemistry 2003.0