In Vitro Activity of LK-157, a Novel Tricyclic Carbapenem As Broad-Spectrum β-Lactamase Inhibitor

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

LK-157 is a novel tricyclic carbapenem with potent activity against class A and class C beta-lactamases. When tested against the purified TEM-1 and SHV-1 enzymes, LK-157 exhibited 50% inhibitory concentrations (IC(50)s) in the ranges of the clavulanic acid and tazobactam IC(50)s (55 nM and 151 nM, respectively). Moreover, LK-157 significantly inhibited AmpC beta-lactamase (IC(50), 62 nM), as LK-157 was >2,000-fold more potent than clavulanic acid and approximately 28-fold more active than tazobactam. The in vitro activities of LK-157 in combination with amoxicillin, piperacillin, ceftazidime, cefotaxime, ceftriaxone, cefepime, cefpirome, and aztreonam against an array of Ambler class A (TEM-, SHV-, CTX-M-, KPC-, PER-, BRO-, and PC-type)- and class C-producing bacterial strains derived from clinical settings were evaluated in synergism experiments and compared with those of clavulanic acid, tazobactam, and sulbactam. In vitro MICs against ESBL-producing strains (except CTX-M-containing strains) were reduced 2- to >256-fold, and those against AmpC-producing strains were reduced even up to >32-fold. The lowest MICs (< or =0.025 to 1.6 microg/ml) were observed for the combination of cefepime and cefpirome with a constant LK-157 concentration of 4 microg/ml, thus raising an interest for further development. LK-157 proved to be a potent beta-lactamase inhibitor, combining activity against class A and class C beta-lactamases, which is an absolute necessity for use in the clinical setting due to the worldwide increasing prevalence of bacterial strains resistant to beta-lactam antibiotics.

Knowledge Graph

Similar Paper

In Vitro Activity of LK-157, a Novel Tricyclic Carbapenem As Broad-Spectrum β-Lactamase Inhibitor
Antimicrobial Agents and Chemotherapy 2009.0
4-Substituted Trinems as Broad Spectrum β-Lactamase Inhibitors:  Structure-Based Design, Synthesis, and Biological Activity
Journal of Medicinal Chemistry 2007.0
5,5,6-Fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of β-lactamases
Bioorganic &amp; Medicinal Chemistry 2008.0
In Vitro Activity of Penem-1 in Combination with β-Lactams against bla <sub>KPC</sub> -Possessing Klebsiella pneumoniae Isolates
Antimicrobial Agents and Chemotherapy 2010.0
A novel tricyclic β-lactam exhibiting potent antibacterial activities against carbapenem-resistant Enterobacterales: Synthesis and structure-activity-relationships
Bioorganic &amp; Medicinal Chemistry 2021.0
Design, synthesis and bioactivity evaluation of tribactam β lactamase inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2002.0
The synthesis and lactamase inhibitory activity of 6-(carboxymethylene)penicillins and 7-(carboxymethylene)cephalosporins
Bioorganic &amp; Medicinal Chemistry Letters 1995.0
Structure-Activity Relationship of 6-Methylidene Penems Bearing 6,5 Bicyclic Heterocycles as Broad-Spectrum β-Lactamase Inhibitors:  Evidence for 1,4-Thiazepine Intermediates with C7 R Stereochemistry by Computational Methods
Journal of Medicinal Chemistry 2006.0
Spirocyclopropyl β-Lactams as Mechanism-Based Inhibitors of Serine β-Lactamases. Synthesis by Rhodium-Catalyzed Cyclopropanation of 6-Diazopenicillanate Sulfone
Journal of Medicinal Chemistry 2003.0
Inhibitor Resistance in the KPC-2 β-Lactamase, a Preeminent Property of This Class A β-Lactamase
Antimicrobial Agents and Chemotherapy 2010.0