Induction of Multidrug Resistance Mechanism inEscherichia coliBiofilms by Interplay between Tetracycline and Ampicillin Resistance Genes

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

Biofilms gain resistance to various antimicrobial agents, and the presence of antibiotic resistance genes is thought to contribute to a biofilm-mediated antibiotic resistance. Here we showed the interplay between the tetracycline resistance efflux pump TetA(C) and the ampicillin resistance gene (bla(TEM-1)) in biofilms of Escherichia coli harboring pBR322 in the presence of the mixture of ampicillin and tetracycline. E. coli in the biofilms could obtain the high-level resistance to ampicillin, tetracycline, penicillin, erythromycin, and chloramphenicol during biofilm development and maturation as a result of the interplay between the marker genes on the plasmids, the increase of plasmid copy number, and consequently the induction of the efflux systems on the bacterial chromosome, especially the EmrY/K and EvgA/S pumps. In addition, we characterized the overexpression of the TetA(C) pump that contributed to osmotic stress response and was involved in the induction of capsular colanic acid production, promoting formation of mature biofilms. However, this investigated phenomenon was highly dependent on the addition of the subinhibitory concentrations of antibiotic mixture, and the biofilm resistance behavior was limited to aminoglycoside antibiotics. Thus, marker genes on plasmids played an important role in both resistance of biofilm cells to antibiotics and in formation of mature biofilms, as they could trigger specific chromosomal resistance mechanisms to confer a high-level resistance during biofilm formation.

Knowledge Graph

Similar Paper

Induction of Multidrug Resistance Mechanism inEscherichia coliBiofilms by Interplay between Tetracycline and Ampicillin Resistance Genes
Antimicrobial Agents and Chemotherapy 2009.0
Role of the rapA Gene in Controlling Antibiotic Resistance of Escherichia coli Biofilms
Antimicrobial Agents and Chemotherapy 2007.0
Many Chromosomal Genes Modulate MarA-Mediated Multidrug Resistance in Escherichia coli
Antimicrobial Agents and Chemotherapy 2010.0
Mutational Upregulation of a Resistance-Nodulation-Cell Division-Type Multidrug Efflux Pump, SdeAB, upon Exposure to a Biocide, Cetylpyridinium Chloride, and Antibiotic Resistance in Serratia marcescens
Antimicrobial Agents and Chemotherapy 2009.0
The Chromosomal Toxin Gene yafQ Is a Determinant of Multidrug Tolerance for Escherichia coli Growing in a Biofilm
Antimicrobial Agents and Chemotherapy 2009.0
Contribution of the CmeABC Efflux Pump to Macrolide and Tetracycline Resistance in Campylobacter jejuni
Antimicrobial Agents and Chemotherapy 2007.0
Two Distinct Major Facilitator Superfamily Drug Efflux Pumps Mediate Chloramphenicol Resistance in Streptomyces coelicolor
Antimicrobial Agents and Chemotherapy 2009.0
High-Level Vancomycin-ResistantStaphylococcus aureusIsolates Associated with a Polymicrobial Biofilm
Antimicrobial Agents and Chemotherapy 2007.0
RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB , Which Is Inhibited by Chlorpromazine
Antimicrobial Agents and Chemotherapy 2008.0
Effect of NlpE Overproduction on Multidrug Resistance in Escherichia coli
Antimicrobial Agents and Chemotherapy 2010.0