Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

Sterol analysis identified four Candida albicans erg3 mutants in which ergosta 7,22-dienol, indicative of perturbations in sterol Δ(5,6)-desaturase (Erg3p) activity, comprised >5% of the total sterol fraction. The erg3 mutants (CA12, CA488, CA490, and CA1008) were all resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole under standard CLSI assay conditions (MIC values, ≥256, 16, 16, 8, and 1 μg ml⁻¹, respectively). Importantly, CA12 and CA1008 retained an azole-resistant phenotype even when assayed in the presence of FK506, a multidrug efflux inhibitor. Conversely, CA488, CA490, and three comparator isolates (CA6, CA14, and CA177, in which ergosterol comprised >80% of the total sterol fraction and ergosta 7,22-dienol was undetectable) all displayed azole-sensitive phenotypes under efflux-inhibited assay conditions. Owing to their ergosterol content, CA6, CA14, and CA177 were highly sensitive to amphotericin B (MIC values, <0.25 μg ml⁻¹); CA1008, in which ergosterol comprised <2% of the total sterol fraction, was less sensitive (MIC, 1 μg ml⁻¹). CA1008 harbored multiple amino acid substitutions in Erg3p but only a single conserved polymorphism (E266D) in sterol 14α-demethylase (Erg11p). CA12 harbored one substitution (W332R) in Erg3p and no residue changes in Erg11p. CA488 and CA490 were found to harbor multiple residue changes in both Erg3p and Erg11p. The results suggest that missense mutations in ERG3 might arise in C. albicans more frequently than currently supposed and that the clinical significance of erg3 mutants, including those in which additional mechanisms also contribute to resistance, should not be discounted.

Knowledge Graph

Similar Paper

Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans
Antimicrobial Agents and Chemotherapy 2010.0
A Clinical Isolate of Candida albicans with Mutations in ERG11 (Encoding Sterol 14α-Demethylase) and ERG5 (Encoding C22 Desaturase) Is Cross Resistant to Azoles and Amphotericin B
Antimicrobial Agents and Chemotherapy 2010.0
Correlation between Azole Susceptibilities, Genotypes, and ERG11 Mutations in Candida albicans Isolates Associated with Vulvovaginal Candidiasis in China
Antimicrobial Agents and Chemotherapy 2010.0
Genetic Dissection of Azole Resistance Mechanisms in Candida albicans and Their Validation in a Mouse Model of Disseminated Infection
Antimicrobial Agents and Chemotherapy 2010.0
Reduced Susceptibility to Polyenes Associated with a Missense Mutation in the ERG6 Gene in a Clinical Isolate of Candida glabrata with Pseudohyphal Growth
Antimicrobial Agents and Chemotherapy 2007.0
A Nonsense Mutation in the ERG6 Gene Leads to Reduced Susceptibility to Polyenes in a Clinical Isolate of Candida glabrata
Antimicrobial Agents and Chemotherapy 2008.0
Abc1p Is a Multidrug Efflux Transporter That Tips the Balance in Favor of Innate Azole Resistance in Candida krusei
Antimicrobial Agents and Chemotherapy 2009.0
Hypersusceptibility to Azole Antifungals in a Clinical Isolate of Candida glabrata with Reduced Aerobic Growth
Antimicrobial Agents and Chemotherapy 2009.0
Relative Contributions of the Candida albicans ABC Transporters Cdr1p and Cdr2p to Clinical Azole Resistance
Antimicrobial Agents and Chemotherapy 2009.0
The Ssk1p Response Regulator and Chk1p Histidine Kinase Mutants of Candida albicans Are Hypersensitive to Fluconazole and Voriconazole
Antimicrobial Agents and Chemotherapy 2007.0