Hypersusceptibility to Azole Antifungals in a Clinical Isolate of Candida glabrata with Reduced Aerobic Growth

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

Petite mutations have been described in Saccharomyces cerevisiae and pathogenic yeasts. However, previous studies of the phenotypic traits of these petite mutants reported that they express azole resistance. We describe a clinical isolate of Candida glabrata with a striking association between increased susceptibility to azoles and respiratory deficiency. This isolate was obtained from a urine sample together with a respiration-competent C. glabrata isolate which exhibited azole resistance. The respiratory status of the two isolates was confirmed by cultivation on glycerol-containing agar and oxygraphy. Flow cytometry revealed the normal incorporation of rhodamine 123, and mitochondrial sections with typical cristae were seen by transmission electron microscopy for both isolates. Together, these results suggested a nuclear origin for the reduced respiratory capacity of the hypersusceptible isolate. The sterol contents of these isolates were similar to the sterol content of a reference strain. Sequencing of the ERG11 and PDR1 genes revealed that the sequences were identical in the two isolates, demonstrating their close relatedness. In addition to silent mutations, they carried a nonsense mutation in PDR1 that led to the truncation of transcription factor Pdr1p. They also overexpressed both PDR1 and one of its targets, CDR1, providing a possible explanation for the azole resistance of the respiration-competent isolate. In conclusion, in addition to azole resistance, which is a common feature of C. glabrata mitochondrial petite mutants, the mutation of a nuclear gene affecting aerobic growth may lead to azole hypersusceptibility; however, the mechanisms underlying this phenotype remain to be determined.

Knowledge Graph

Similar Paper

Hypersusceptibility to Azole Antifungals in a Clinical Isolate of Candida glabrata with Reduced Aerobic Growth
Antimicrobial Agents and Chemotherapy 2009.0
A Nonsense Mutation in the ERG6 Gene Leads to Reduced Susceptibility to Polyenes in a Clinical Isolate of Candida glabrata
Antimicrobial Agents and Chemotherapy 2008.0
Reduced Susceptibility to Polyenes Associated with a Missense Mutation in the ERG6 Gene in a Clinical Isolate of Candida glabrata with Pseudohyphal Growth
Antimicrobial Agents and Chemotherapy 2007.0
A Clinical Isolate of Candida albicans with Mutations in ERG11 (Encoding Sterol 14α-Demethylase) and ERG5 (Encoding C22 Desaturase) Is Cross Resistant to Azoles and Amphotericin B
Antimicrobial Agents and Chemotherapy 2010.0
Genetic Dissection of Azole Resistance Mechanisms in Candida albicans and Their Validation in a Mouse Model of Disseminated Infection
Antimicrobial Agents and Chemotherapy 2010.0
Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans
Antimicrobial Agents and Chemotherapy 2010.0
ACandida albicansPetite Mutant Strain with Uncoupled Oxidative Phosphorylation OverexpressesMDR1and Has Diminished Susceptibility to Fluconazole and Voriconazole
Antimicrobial Agents and Chemotherapy 2007.0
Relative Contributions of the Candida albicans ABC Transporters Cdr1p and Cdr2p to Clinical Azole Resistance
Antimicrobial Agents and Chemotherapy 2009.0
Roles of Calcineurin and Crz1 in Antifungal Susceptibility and Virulence of Candida glabrata
Antimicrobial Agents and Chemotherapy 2010.0
A New Aspergillus fumigatus Resistance Mechanism Conferring In Vitro Cross-Resistance to Azole Antifungals Involves a Combination of cyp51A Alterations
Antimicrobial Agents and Chemotherapy 2007.0