Discovery of 9-(6-Aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a Potent, Selective, and Orally Available Mammalian Target of Rapamycin (mTOR) Inhibitor for Treatment of Cancer

Journal of Medicinal Chemistry
2011.0

Abstract

The mTOR mediated PI3K/AKT/mTOR signal transduction pathway has been demonstrated to play a key role in a broad spectrum of cancers. Starting from the mTOR selective inhibitor 1 (Torin1), a focused medicinal chemistry effort led to the discovery of an improved mTOR inhibitor 3 (Torin2), which possesses an EC(50) of 0.25 nM for inhibiting cellular mTOR activity. Compound 3 exhibited 800-fold selectivity over PI3K (EC(50): 200 nM) and over 100-fold binding selectivity relative to 440 other protein kinases. Compound 3 has significantly improved bioavailability (54%), metabolic stability, and plasma exposure relative to compound 1.

Knowledge Graph

Similar Paper

Discovery of 9-(6-Aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a Potent, Selective, and Orally Available Mammalian Target of Rapamycin (mTOR) Inhibitor for Treatment of Cancer
Journal of Medicinal Chemistry 2011.0
Highly Selective, Potent, and Oral mTOR Inhibitor for Treatment of Cancer as Autophagy Inducer
Journal of Medicinal Chemistry 2018.0
Potent, Selective, and Orally Bioavailable Inhibitors of the Mammalian Target of Rapamycin Kinase Domain Exhibiting Single Agent Antiproliferative Activity
Journal of Medicinal Chemistry 2012.0
Discovery of Potent and Selective Inhibitors of the Mammalian Target of Rapamycin (mTOR) Kinase
Journal of Medicinal Chemistry 2009.0
Discovery and SAR exploration of a novel series of imidazo[4,5-b]pyrazin-2-ones as potent and selective mTOR kinase inhibitors
Bioorganic & Medicinal Chemistry Letters 2011.0
Imidazo[1,5-a]pyrazines: Orally efficacious inhibitors of mTORC1 and mTORC2
Bioorganic & Medicinal Chemistry Letters 2011.0
(S)-4-(Difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530), a Potent, Orally Bioavailable, and Brain-Penetrable Dual Inhibitor of Class I PI3K and mTOR Kinase
Journal of Medicinal Chemistry 2019.0
5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology
Journal of Medicinal Chemistry 2017.0
Benzofuran derivatives as anticancer inhibitors of mTOR signaling
European Journal of Medicinal Chemistry 2014.0
Discovery of novel quinoline-based mTOR inhibitors via introducing intra-molecular hydrogen bonding scaffold (iMHBS): The design, synthesis and biological evaluation
Bioorganic & Medicinal Chemistry 2015.0