Discovery of novel quinoline-based mTOR inhibitors via introducing intra-molecular hydrogen bonding scaffold (iMHBS): The design, synthesis and biological evaluation

Bioorganic & Medicinal Chemistry
2015.0

Abstract

A series of quinoline derivatives featuring the novelty of introducing intra-molecular hydrogen bonding scaffold (iMHBS) were designed, synthesized and biologically evaluated for their mTOR inhibitory activity, as well as anti-proliferative efficacies against HCT-116, PC-3 and MCF-7 cell lines. As a result, six compounds exhibited significant inhibition against mTOR with IC50 values below 35nM. Compound 15a, the most potent mTOR inhibitor reported herein (IC50=14nM), also displayed the most favorable cellular activities, with the IC50 values of 0.46, 0.61 and 0.24μM against HCT-116, PC-3 and MCF-7, respectively. Besides, several compounds in this series were identified to be selective over class I PI3Ks. Further western blot analysis of 16b, a representative compound in this series, highlighted their advantage in surmounting the S6K/IRS1/PI3K negative feedback loop upon dual inhibition of mTORC1 and mTORC2. In addition to the remarkable activity, 15a demonstrated acceptable stability in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and liver microsome, thereby being valuable for extensive in vivo investigation.

Knowledge Graph

Similar Paper

Discovery of novel quinoline-based mTOR inhibitors via introducing intra-molecular hydrogen bonding scaffold (iMHBS): The design, synthesis and biological evaluation
Bioorganic & Medicinal Chemistry 2015.0
Highly Selective, Potent, and Oral mTOR Inhibitor for Treatment of Cancer as Autophagy Inducer
Journal of Medicinal Chemistry 2018.0
Design and synthesis of novel furoquinoline based inhibitors of multiple targets in the PI3K/Akt-mTOR pathway
Bioorganic & Medicinal Chemistry Letters 2008.0
Discovery and SAR exploration of a novel series of imidazo[4,5-b]pyrazin-2-ones as potent and selective mTOR kinase inhibitors
Bioorganic & Medicinal Chemistry Letters 2011.0
Discovery of Potent and Selective Inhibitors of the Mammalian Target of Rapamycin (mTOR) Kinase
Journal of Medicinal Chemistry 2009.0
Discovery of 9-(6-Aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a Potent, Selective, and Orally Available Mammalian Target of Rapamycin (mTOR) Inhibitor for Treatment of Cancer
Journal of Medicinal Chemistry 2011.0
Synthesis and biological evaluation of 6-fluoro-3-phenyl-7-piperazinyl quinolone derivatives as potential topoisomerase I inhibitors
European Journal of Medicinal Chemistry 2016.0
Synthesis and c-Met Kinase Inhibition of 3,5-Disubstituted and 3,5,7-Trisubstituted Quinolines: Identification of 3-(4-Acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a Novel Anticancer Agent
Journal of Medicinal Chemistry 2011.0
Design, synthesis, biological evaluation and docking studies of novel 2-substituted-4-morpholino-7,8-dihydro-5 H -thiopyrano[4,3- d ]pyrimidine derivatives as dual PI3Kα/mTOR inhibitors
European Journal of Medicinal Chemistry 2016.0
Discovery of benzenesulfonamide derivatives as potent PI3K/mTOR dual inhibitors with in vivo efficacies against hepatocellular carcinoma
Bioorganic & Medicinal Chemistry 2016.0