Structural Basis for the Interaction Between Carbonic Anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides

Journal of Medicinal Chemistry
2011.0

Abstract

Isoquinolinesulfonamides inhibit human carbonic anhydrases (hCAs) and display selectivity toward therapeutically relevant isozymes. The crystal structure of hCA II in complex with 6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamide revealed unusual inhibitor binding. Structural analyses allowed for discerning the fine details of the inhibitor binding mode to the active site, thus providing clues for the future design of even more selective inhibitors for druggable isoforms such as the cancer associated hCA IX and neuronal hCA VII.

Knowledge Graph

Similar Paper

Structural Basis for the Interaction Between Carbonic Anhydrase and 1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamides
Journal of Medicinal Chemistry 2011.0
Identification of 3,4-Dihydroisoquinoline-2(1H)-sulfonamides as Potent Carbonic Anhydrase Inhibitors: Synthesis, Biological Evaluation, and Enzyme−Ligand X-ray Studies
Journal of Medicinal Chemistry 2010.0
Coumarinyl-substituted sulfonamides strongly inhibit several human carbonic anhydrase isoforms: solution and crystallographic investigations
Bioorganic & Medicinal Chemistry 2010.0
Synthesis, Structure–Activity Relationship Studies, and X-ray Crystallographic Analysis of Arylsulfonamides as Potent Carbonic Anhydrase Inhibitors
Journal of Medicinal Chemistry 2012.0
4-[N-(Substituted 4-pyrimidinyl)amino]benzenesulfonamides as inhibitors of carbonic anhydrase isozymes I, II, VII, and XIII
Bioorganic & Medicinal Chemistry 2010.0
Carbonic anhydrase inhibitors. The X-ray crystal structure of human isoform II in adduct with an adamantyl analogue of acetazolamide resides in a less utilized binding pocket than most hydrophobic inhibitors
Bioorganic & Medicinal Chemistry Letters 2010.0
Conformational variability of different sulfonamide inhibitors with thienyl-acetamido moieties attributes to differential binding in the active site of cytosolic human carbonic anhydrase isoforms
Bioorganic & Medicinal Chemistry 2011.0
Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety
European Journal of Medicinal Chemistry 2019.0
Carbonic anhydrase inhibitors. Interaction of 2-N,N-dimethylamino-1,3,4-thiadiazole-5-methanesulfonamide with 12 mammalian isoforms: Kinetic and X-ray crystallographic studies
Bioorganic & Medicinal Chemistry Letters 2008.0
Looking toward the Rim of the Active Site Cavity of Druggable Human Carbonic Anhydrase Isoforms
ACS Medicinal Chemistry Letters 2020.0