Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines

Journal of Medicinal Chemistry
2011.0

Abstract

The pharmacology of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel has attracted significant interest in recent years with the aim to search for rational new therapies for diseases caused by CFTR malfunction. Mutations that abolish the function of CFTR cause the life-threatening genetic disease cystic fibrosis (CF). The most common cause of CF is the deletion of phenylalanine 508 (ΔF508) in the CFTR chloride channel. Felodipine, nifedipine, and other antihypertensive 1,4-dihydropyridines (1,4-DHPs) that block L-type Ca(2+) channels are also effective potentiators of CFTR gating, able to correct the defective activity of ΔF508 and other CFTR mutants ( Mol. Pharmacol. 2005 , 68 , 1736 ). For this purpose, we evaluated the ability of the previously and newly synthesized 4-imidazo[2,1-b]thiazoles-1,4-dihydropyridines without vascular activity and inotropic and/or chronotropic cardiac effects ( J. Med. Chem. 2008 , 51 , 1592 ) to enhance the activity of ΔF508-CFTR. Our studies indicate compounds 17, 18, 20, 21, 38, and 39 as 1,4-DHPs with an interesting profile of activity.

Knowledge Graph

Similar Paper

Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines
Journal of Medicinal Chemistry 2011.0
Ligand-based design, in silico ADME-Tox filtering, synthesis and biological evaluation to discover new soluble 1,4-DHP-based CFTR activators
European Journal of Medicinal Chemistry 2012.0
Synthesis and structure–activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis
European Journal of Medicinal Chemistry 2015.0
Pyrazolylthiazole as ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator Correctors with Improved Hydrophilicity Compared to Bithiazoles
Journal of Medicinal Chemistry 2010.0
ΔF508-CFTR correctors: Synthesis and evaluation of thiazole-tethered imidazolones, oxazoles, oxadiazoles, and thiadiazoles
Bioorganic & Medicinal Chemistry Letters 2014.0
Potential Agents for Treating Cystic Fibrosis: Cyclic Tetrapeptides That Restore Trafficking and Activity of ΔF508-CFTR
ACS Medicinal Chemistry Letters 2011.0
Imidazo[2,1-b]thiazole System: A Scaffold Endowing Dihydropyridines with Selective Cardiodepressant Activity
Journal of Medicinal Chemistry 2008.0
Ligand Based Approach to L-Type Calcium Channel by Imidazo[2,1-b]thiazole-1,4-Dihydropyridines: from Heart Activity to Brain Affinity
Journal of Medicinal Chemistry 2013.0
Potent s-cis-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy
Journal of Medicinal Chemistry 2008.0
4′-Methyl-4,5′-bithiazole-based correctors of defective ΔF508-CFTR cellular processing
Bioorganic & Medicinal Chemistry Letters 2008.0