Potent s-cis-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy

Journal of Medicinal Chemistry
2008.0

Abstract

N-(5-(2-(5-Chloro-2-methoxyphenylamino)thiazol-4-yl)-4-methylthiazol-2-yl)pivalamide 1 (compound 15Jf) was found previously to correct defective cellular processing of the cystic fibrosis protein DeltaF508-CFTR. Eight C4'-C5 C,C-bond-controlling bithiazole analogues of 1 were designed, synthesized, and evaluated to establish that constraining rotation about the bithiazole-tethering has a significant effect on corrector activity. For example, constraining the C4'-C5 bithiazole tether in the s-cis conformation [N-(2-(5-chloro-2-methoxyphenylamino)-7,8-dihydro-6 H-cyclohepta[1,2- d:3,4- d']bithiazole-2'-yl)pivalamide, 29] results in improved corrector activity. Heteroatom placement in the bithaizole core is also critical as evidenced by the decisive loss of corrector activity with s-cis constrained N-(2-(5-chloro-2-methoxyphenylamino)-5,6-dihydro-4 H-cyclohepta[1,2- d:3,4- d']bithiazole-2'-yl)pivalamide 33. In addition, computational models were utilized to examine the conformational preferences for select model systems. Following our analysis, the " s-cis-locked" cycloheptathiazolothiazole 29 was found to be the most potent bithiazole corrector, with an IC50 of approximately 450 nM.

Knowledge Graph

Similar Paper

Potent s-cis-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy
Journal of Medicinal Chemistry 2008.0
Pyrazolylthiazole as ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator Correctors with Improved Hydrophilicity Compared to Bithiazoles
Journal of Medicinal Chemistry 2010.0
4′-Methyl-4,5′-bithiazole-based correctors of defective ΔF508-CFTR cellular processing
Bioorganic & Medicinal Chemistry Letters 2008.0
ΔF508-CFTR correctors: Synthesis and evaluation of thiazole-tethered imidazolones, oxazoles, oxadiazoles, and thiadiazoles
Bioorganic & Medicinal Chemistry Letters 2014.0
Synthesis and structure–activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis
European Journal of Medicinal Chemistry 2015.0
Synthesis and biological evaluation of novel thiazole- VX-809 hybrid derivatives as F508del correctors by QSAR-based filtering tools
European Journal of Medicinal Chemistry 2018.0
Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines
Journal of Medicinal Chemistry 2011.0
Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis
Bioorganic & Medicinal Chemistry Letters 2022.0
Fatty Acid Cysteamine Conjugates as Novel and Potent Autophagy Activators That Enhance the Correction of Misfolded F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)
Journal of Medicinal Chemistry 2017.0
Discovery of Icenticaftor (QBW251), a Cystic Fibrosis Transmembrane Conductance Regulator Potentiator with Clinical Efficacy in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease
Journal of Medicinal Chemistry 2021.0