Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine—new tacrine derivate with cholinergic properties

Bioorganic & Medicinal Chemistry Letters
2011.0

Abstract

Cholinesterase inhibitors are, so far, the only successful strategy for the symptomatic treatment of Alzheimer's disease. Tacrine (THA) is a potent acetylcholinesterase inhibitor that was used in the treatment of Alzheimer's disease for a long time. However, the clinical use of THA was hampered by its low therapeutic index, short half-life and liver toxicity. 7-Methoxytacrine (7-MEOTA) is equally pharmacological active compound with lower toxicity compared to THA. In this Letter, the synthesis, biological activity and molecular modelling of elimination by-product isolated during synthesis of 7-MEOTA based bis-alkylene linked compound is described.

Knowledge Graph

Similar Paper

Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine—new tacrine derivate with cholinergic properties
Bioorganic & Medicinal Chemistry Letters 2011.0
Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease
Bioorganic & Medicinal Chemistry Letters 2010.0
Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine–Coumarin Hybrids as Cholinesterase Inhibitors
Journal of Medicinal Chemistry 2014.0
The synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory activity of tacrine (Cognex®) derivaties
Bioorganic & Medicinal Chemistry Letters 1992.0
(.+-.)-9-Amino-1,2,3,4-tetrahydroacridin-1-ol. A potential Alzheimer's disease therapeutic of low toxicity
Journal of Medicinal Chemistry 1988.0
O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation
Bioorganic & Medicinal Chemistry 2012.0
Synthesis and Biological Evaluation of NO-Donor-Tacrine Hybrids as Hepatoprotective Anti-Alzheimer Drug Candidates
Journal of Medicinal Chemistry 2008.0
Synthesis, in Vitro Pharmacology, and Molecular Modeling of Very Potent Tacrine−Huperzine A Hybrids as Acetylcholinesterase Inhibitors of Potential Interest for the Treatment of Alzheimer's Disease
Journal of Medicinal Chemistry 1999.0
Novel Tacrine Analogues for Potential Use against Alzheimer's Disease:  Potent and Selective Acetylcholinesterase Inhibitors and 5-HT Uptake Inhibitors
Journal of Medicinal Chemistry 1997.0
Tacrine-mefenamic acid hybrids for inhibition of acetylcholinesterase
MedChemComm 2011.0