Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: Application to a pyrimidine-2,4-diamine template

Bioorganic & Medicinal Chemistry Letters
2012.0

Abstract

We investigated a group of 2-benzylpiperidin-N-benzylpyrimidin-4-amines with various electron-withdrawing or electron-donating groups (EWGs or EDGs, respectively) as multi-targeted Alzheimer's disease (AD) therapeutics. The synthesized derivatives were screened for anti-cholinesterase (AChE and BuChE), anti-Aβ-aggregation (AChE- and self-induced) and anti-β-secretase (BACE-1) activities in an effort to identify lead, multifunctional candidates as part of our multi-targeted approach to treat AD. Biological assessment revealed that the nature of the substituent on the C-4 benzylamine group (e.g., halogen vs methoxy-based) greatly affected the biological profile. In vitro screening identified N(2)-(1-benzylpiperidin-4-yl)-N(4)-(3,4-dimethoxybenzyl)pyrimidine-2,4-diamine (7h) as the lead candidate with a dual ChE (AChE IC(50)=9.9 μM; BuChE IC(50)=11.4 μM), Aβ-aggregation (AChE-induced=59.3%; self-induced=17.4% at 100 μM) and BACE-1 (34% inhibition at 10 μM) inhibitory profile along with good cell viability (% neuroblastoma cell viability at 40 μM=81.0%). Molecular modeling studies indicate that a central pyrimidine-2,4-diamine ring serves as a suitable template to develop novel small molecule candidates to target multiple pathological routes in AD.

Knowledge Graph

Similar Paper

Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: Application to a pyrimidine-2,4-diamine template
Bioorganic & Medicinal Chemistry Letters 2012.0
Development of 2-substituted-N-(naphth-1-ylmethyl) and N-benzhydrylpyrimidin-4-amines as dual cholinesterase and Aβ-aggregation inhibitors: Synthesis and biological evaluation
Bioorganic & Medicinal Chemistry Letters 2011.0
Design, synthesis, and bioevaluation of benzamides: Novel acetylcholinesterase inhibitors with multi-functions on butylcholinesterase, Aβ aggregation, and β-secretase
Bioorganic & Medicinal Chemistry 2012.0
Design, synthesis, and multitargeted profiling of N-benzylpyrrolidine derivatives for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2020.0
Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Design and development of multitarget-directed N-Benzylpiperidine analogs as potential candidates for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2019.0
Design, synthesis and evaluation of chromone-2-carboxamido-alkylbenzylamines as multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics
Bioorganic & Medicinal Chemistry 2007.0
Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation
European Journal of Medicinal Chemistry 2017.0
Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0