Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation

European Journal of Medicinal Chemistry
2017.0

Abstract

The complexity of Alzheimer's disease (AD) calls for search of multifunctional compounds as potential candidates for effective therapy. A series of phthalimide and saccharin derivatives linked by different alicyclic fragments (piperazine, hexahydropyrimidine, 3-aminopyrrolidine or 3-aminopiperidine) with phenylalkyl moieties attached have been designed, synthesized, and evaluated as multifunctional anti-AD agents with cholinesterase, β-secretase and β-amyloid inhibitory activities. In vitro studies showed that the majority of saccharin derivatives with piperazine moiety and one phthalimide derivative with 3-aminopiperidine fragment exhibited inhibitory potency toward acetylcholinesterase (AChE) with EeAChE IC50 values ranging from 0.83 μM to 19.18 μM. The target compounds displayed inhibition of human β-secretase-1 (hBACE1) ranging from 26.71% to 61.42% at 50 μM concentration. Among these compounds, two multifunctional agents (26, [2-(2-(4-benzylpiperazin-1-yl)ethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide] and 52, 2-(2-(3-(3,5-difluorobenzylamino)piperidin-1-yl)ethyl)isoindoline-1,3-dione) have been identified. Compound 26 exhibited the highest inhibitory potency against EeAChE (IC50 = 0.83 μM) and inhibitory activity against hBACE1 (33.61% at 50 μM). Compound 52 is a selective AChE inhibitor (IC50 AChE = 6.47 μM) with BACE1 inhibitory activity (26.3% at 50 μM) and it displays the most significant Aβ anti-aggregating properties among all the obtained compounds (39% at 10 μM). Kinetic and molecular modeling studies indicate that 26 may act as non-competitive AChE inhibitor able to interact with both catalytic and peripheral active site of the enzyme.

Knowledge Graph

Similar Paper

Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation
European Journal of Medicinal Chemistry 2017.0
Design, synthesis and evaluation of phthalide alkyl tertiary amine derivatives as promising acetylcholinesterase inhibitors with high potency and selectivity against Alzheimer's disease
Bioorganic & Medicinal Chemistry 2020.0
Design, synthesis, and bioevaluation of benzamides: Novel acetylcholinesterase inhibitors with multi-functions on butylcholinesterase, Aβ aggregation, and β-secretase
Bioorganic & Medicinal Chemistry 2012.0
Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2013.0
Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors
Bioorganic & Medicinal Chemistry Letters 2016.0
Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo
Bioorganic & Medicinal Chemistry 2015.0
Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics
Bioorganic & Medicinal Chemistry 2007.0
Multifunctional 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of phthalimide-alkylamine derivatives as balanced multifunctional cholinesterase and monoamine oxidase-B inhibitors for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2017.0