Synthesis and evaluation of novel 4-[(3H,3aH,6aH)-3-phenyl)-4,6-dioxo-2-phenyldihydro-2H-pyrrolo[3,4-d]isoxazol-5(3H,6H,6aH)-yl]benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents

Bioorganic & Medicinal Chemistry
2012.0

Abstract

The present study was designed to synthesize and evaluate pyrrolo-isoxazole benzoic acid derivatives as potential acetylcholinesterase (AChE) inhibitors for the management of Alzheimer's disease. The synthesis of pyrrolo-isoxazole benzoic acid derivatives involved ring opening cyclization of p-aminobenzoic acid with maleic anhydride to yield maleanilic acid, which in turn afforded N-arylmaleimide via ring closed cyclization. Azomethine-N-oxides were obtained by condensation of N-arylhydroxylamine with differently substituted benzaldehydes followed by refluxing of N-arylmaleimide with differently substituted azomethine-N-oxides to pyrrolo-isoxazole benzoic acid derivatives as cis- and trans-stereoisomers. The synthesized compounds were evaluated in vitro for AChE inhibitory activity in rat brain homogenate with donepezil as standard AChE inhibitor. Thereafter, the most potent test compound was evaluated for in vitro butyrylcholinesterase inhibitory activity and in vivo memory evaluation in scopolamine (0.4mg/kg)-induced amnesia in mice by employing Morris water maze test. All pyrrolo-isoxazole benzoic acid derivatives demonstrated potent AChE inhibitory activity. Most of compounds exhibited similar activity to donepezil and four of them (7h, 7i, 8i, and 8h, IC(50)=19.1±1.9-17.5±1.5nM) displayed higher inhibitory activity as compared to donepezil (21.5±3.2nM) with compound 8ia (IC(50)=17.5±1.5nM) being the most active one. The test compound 8ia also ameliorated scopolamine-induced amnesia in mice in terms of restoration of time spent in target quadrant (TSTQ) and escape latency time (ELT). It may be concluded that pyrrolo-isoxazole benzoic acid derivatives may be employed as potential AChE inhibitors.

Knowledge Graph

Similar Paper

Synthesis and evaluation of novel 4-[(3H,3aH,6aH)-3-phenyl)-4,6-dioxo-2-phenyldihydro-2H-pyrrolo[3,4-d]isoxazol-5(3H,6H,6aH)-yl]benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents
Bioorganic & Medicinal Chemistry 2012.0
Novel Benzisoxazole Derivatives as Potent and Selective Inhibitors of Acetylcholinesterase
Journal of Medicinal Chemistry 1994.0
Synthesis of aminoalkyl-substituted coumarin derivatives as acetylcholinesterase inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Design, synthesis and evaluation of some N -methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory
Bioorganic & Medicinal Chemistry 2017.0
Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory
European Journal of Medicinal Chemistry 2019.0
Design, synthesis, and biological evaluation of novel 4-oxobenzo[d]1,2,3-triazin-benzylpyridinum derivatives as potent anti-Alzheimer agents
Bioorganic & Medicinal Chemistry 2019.0
Design, synthesis and evaluation of phthalide alkyl tertiary amine derivatives as promising acetylcholinesterase inhibitors with high potency and selectivity against Alzheimer's disease
Bioorganic & Medicinal Chemistry 2020.0
Design, synthesis, and evaluation of novel N-(4-phenoxybenzyl)aniline derivatives targeting acetylcholinesterase, β-amyloid aggregation and oxidative stress to treat Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2019.0
Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine, and related derivatives
Journal of Medicinal Chemistry 1992.0
Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo
Bioorganic & Medicinal Chemistry 2015.0