Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo

Bioorganic & Medicinal Chemistry
2015.0

Abstract

Due to the complex nature of Alzheimer's disease, multi-target-directed ligand approaches are one of the most promising strategies in the search for effective treatments. Acetylcholinesterase, butyrylcholinesterase and β-amyloid are the predominant biological targets in the search for new anti-Alzheimer's agents. Our aim was to combine both anticholinesterase and β-amyloid anti-aggregation activities in one molecule, and to determine the therapeutic potential in vivo. We designed and synthesized 28 new compounds as derivatives of donepezil that contain the N-benzylpiperidine moiety combined with the phthalimide or indole moieties. Most of these test compounds showed micromolar activities against cholinesterases and aggregation of β-amyloid, combined with positive results in blood-brain barrier permeability assays. The most promising compound 23 (2-(8-(1-(3-chlorobenzyl)piperidin-4-ylamino)octyl)isoindoline-1,3-dione) is an inhibitor of butyrylcholinesterase (IC50=0.72 μM) that has β-amyloid anti-aggregation activity (72.5% inhibition at 10 μM) and can cross the blood-brain barrier. Moreover, in an animal model of memory impairment induced by scopolamine, the activity of 23 was comparable to that of donepezil. The selected compound 23 is an excellent lead structure in the further search for new anti-Alzheimer's agents.

Knowledge Graph

Similar Paper

Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo
Bioorganic & Medicinal Chemistry 2015.0
Isoindoline-1,3-dione derivatives targeting cholinesterases: Design, synthesis and biological evaluation of potential anti-Alzheimer’s agents
Bioorganic & Medicinal Chemistry 2015.0
Synthesis of donepezil-based multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2015.0
Design, synthesis and biological activity of novel donepezil derivatives bearing N -benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry 2017.0
Novel Donepezil-Based Inhibitors of Acetyl- and Butyrylcholinesterase and Acetylcholinesterase-Induced β-Amyloid Aggregation
Journal of Medicinal Chemistry 2008.0
Novel N-benzylpiperidine carboxamide derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2019.0
Design and development of multitarget-directed N-Benzylpiperidine analogs as potential candidates for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2019.0
Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Benzylpiperidine-Linked Diarylthiazoles as Potential Anti-Alzheimer’s Agents: Synthesis and Biological Evaluation
Journal of Medicinal Chemistry 2016.0
Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics
Bioorganic & Medicinal Chemistry 2007.0