Design, Synthesis, and Biological Evaluation of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4′-pyridyl)carboxamido]morphinan Derivatives as Peripheral Selective μ Opioid Receptor Agents

Journal of Medicinal Chemistry
2012.0

Abstract

Peripheral selective μ opioid receptor (MOR) antagonists could alleviate the symptoms of opioid-induced constipation (OIC) without compromising the analgesic effect of opioids. However, a variety of adverse effects were associated with them, partially due to their relatively low MOR selectivity. NAP, a 6β-N-4'-pyridyl substituted naltrexamine derivative, was identified previously as a potent and highly selective MOR antagonist mainly acting within the peripheral nervous system. The noticeable diarrhea associated with it prompted the design and synthesis of its analogues in order to study its structure-activity relationship. Among them, compound 8 showed improved pharmacological profiles compared to the original lead, acting mainly at peripheral while increasing the intestinal motility in morphine-pelleted mice (ED(50) = 0.03 mg/kg). The slight decrease of the ED(50) compared to the original lead was well compensated by the unobserved adverse effect. Hence, this compound seems to be a more promising lead to develop novel therapeutic agents toward OIC.

Knowledge Graph

Similar Paper

Design, Synthesis, and Biological Evaluation of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4′-pyridyl)carboxamido]morphinan Derivatives as Peripheral Selective μ Opioid Receptor Agents
Journal of Medicinal Chemistry 2012.0
Design, Synthesis, and Biological Evaluation of the Third Generation 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4′-pyridyl)carboxamido]morphinan (NAP) Derivatives as μ/κ Opioid Receptor Dual Selective Ligands
Journal of Medicinal Chemistry 2019.0
Rational Design, Chemical Syntheses, and Biological Evaluations of Peripherally Selective Mu Opioid Receptor Ligands as Potential Opioid Induced Constipation Treatment
Journal of Medicinal Chemistry 2022.0
Design, Synthesis, and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as μ Opioid Receptor Selective Antagonists
Journal of Medicinal Chemistry 2009.0
Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14-O-Methyloxymorphone, as Potent μ/δ Opioid Agonists and Peripherally Selective Antinociceptives
Journal of Medicinal Chemistry 2019.0
Design, syntheses, and pharmacological characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan analogues as opioid receptor ligands
Bioorganic & Medicinal Chemistry 2015.0
Discovery of a Potent, Peripherally Selective trans-3,4-Dimethyl-4-(3-hydroxyphenyl)piperidine Opioid Antagonist for the Treatment of Gastrointestinal Motility Disorders
Journal of Medicinal Chemistry 1994.0
Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 18. N-Substituted 14-Phenylpropyloxymorphinan-6-ones with Unanticipated Agonist Properties:  Extending the Scope of Common Structure−Activity Relationships
Journal of Medicinal Chemistry 2003.0
Novel trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines as μ opioid receptor antagonists with improved opioid receptor selectivity profiles
Bioorganic & Medicinal Chemistry Letters 2008.0
Synthesis and biological evaluation of 14-alkoxymorphinans. 2. (-)-N-(Cyclopropylmethyl)-4,14-dimethoxymorphinan-6-one, a selective .mu. opioid receptor antagonist
Journal of Medicinal Chemistry 1989.0