Fluorescent Derivatives of AC-42 To Probe Bitopic Orthosteric/Allosteric Binding Mechanisms on Muscarinic M1 Receptors

Journal of Medicinal Chemistry
2012.0

Abstract

Two fluorescent derivatives of the M1 muscarinic selective agonist AC-42 were synthesized by coupling the lissamine rhodamine B fluorophore (in ortho and para positions) to AC42-NH(2). This precursor, prepared according to an original seven-step procedure, was included in the study together with the LRB fluorophore (alone or linked to an alkyl chain). All these compounds are antagonists, but examination of their ability to inhibit or modulate orthosteric [(3)H]NMS binding revealed that para-LRB-AC42 shared several properties with AC-42. Carefully designed experiments allowed para-LRB-AC42 to be used as a FRET tracer on EGFP-fused M1 receptors. Under equilibrium binding conditions, orthosteric ligands, AC-42, and the allosteric modulator gallamine behaved as competitors of para-LRB-AC42 binding whereas other allosteric compounds such as WIN 51,708 and N-desmethylclozapine were noncompetitive inhibitors. Finally, molecular modeling studies focused on putative orthosteric/allosteric bitopic poses for AC-42 and para-LRB-AC42 in a 3D model of the human M1 receptor.

Knowledge Graph

Similar Paper

Fluorescent Derivatives of AC-42 To Probe Bitopic Orthosteric/Allosteric Binding Mechanisms on Muscarinic M1 Receptors
Journal of Medicinal Chemistry 2012.0
Red-Emitting Dibenzodiazepinone Derivatives as Fluorescent Dualsteric Probes for the Muscarinic Acetylcholine M<sub>2</sub> Receptor
Journal of Medicinal Chemistry 2020.0
Design and synthesis of N-[6-(Substituted Aminoethylideneamino)-2-Hydroxyindan-1-yl]arylamides as selective and potent muscarinic M1 agonists
Bioorganic &amp; Medicinal Chemistry Letters 2015.0
Rational Design of Partial Agonists for the Muscarinic M<sub>1</sub>Acetylcholine Receptor
Journal of Medicinal Chemistry 2015.0
Radiolabeled Dibenzodiazepinone-Type Antagonists Give Evidence of Dualsteric Binding at the M<sub>2</sub> Muscarinic Acetylcholine Receptor
Journal of Medicinal Chemistry 2017.0
Further exploration of M1 allosteric agonists: Subtle structural changes abolish M1 allosteric agonism and result in pan-mAChR orthosteric antagonism
Bioorganic &amp; Medicinal Chemistry Letters 2013.0
Synthesis and Biological Characterization of 1,4,5,6-Tetrahydropyrimidine and 2-Amino-3,4,5,6-tetrahydropyridine Derivatives as Selective m1 Agonists
Journal of Medicinal Chemistry 1997.0
First Gallamine−Tacrine Hybrid:  Design and Characterization at Cholinesterases and the M<sub>2</sub> Muscarinic Receptor
Journal of Medicinal Chemistry 2007.0
Synthesis and Pharmacological Evaluation of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) Designed to Bind Irreversibly to an Allosteric Site of the M<sub>1</sub>Muscarinic Acetylcholine Receptor
Journal of Medicinal Chemistry 2014.0
Dualsteric Muscarinic Antagonists–Orthosteric Binding Pose Controls Allosteric Subtype Selectivity
Journal of Medicinal Chemistry 2014.0