Amine Linked Flavonoid Dimers as Modulators for P-Glycoprotein-Based Multidrug Resistance: Structure–Activity Relationship and Mechanism of Modulation

Journal of Medicinal Chemistry
2012.0

Abstract

Here we report a great improvement in reversal potency of cancer drug resistance when flavonoid dimers possess a functionally substituted aminopolyethylene glycol linker. The most potent compound, 18, contains a N-benzyl group at the linker. It has many advantages including (1) high potencies in reversing P-glycoprotein (P-gp) mediated resistance in LCC6MDR cells to various anticancer drugs with EC(50) in the nanomolar range, (2) low toxicity and high therapeutic index, and (3) preferential inhibition of P-gp over multidrug resistance protein 1 and breast cancer resistance protein. Compound 18 stimulates P-gp-ATPase activity by 2.7-fold and mediates a dose-dependent inhibition of doxorubicin (DOX) transport activity. Lineweaver-Burk and Dixon plots suggest that 18 is a competitive inhibitor to DOX in binding to P-gp with a K(i) of 0.28-0.34 μM and a Hill coefficient of 1.17. Moreover, the LCC6MDR cell displays about 2.1-fold lower intracellular accumulation of 18 compared to the wild type, suggesting that 18 is a P-gp substrate as well.

Knowledge Graph

Similar Paper

Amine Linked Flavonoid Dimers as Modulators for P-Glycoprotein-Based Multidrug Resistance: Structure–Activity Relationship and Mechanism of Modulation
Journal of Medicinal Chemistry 2012.0
Flavonoid Dimers as Bivalent Modulators for P-Glycoprotein-Based Multidrug Resistance:  Synthetic Apigenin Homodimers Linked with Defined-Length Poly(ethylene glycol) Spacers Increase Drug Retention and Enhance Chemosensitivity in Resistant Cancer Cells
Journal of Medicinal Chemistry 2006.0
Flavonoid-Related Modulators of Multidrug Resistance:  Synthesis, Pharmacological Activity, and Structure−Activity Relationships
Journal of Medicinal Chemistry 1999.0
Design and synthesis of aminoester heterodimers containing flavone or chromone moieties as modulators of P-glycoprotein-based multidrug resistance (MDR)
Bioorganic & Medicinal Chemistry 2018.0
Modulation of Multidrug Resistance Protein 1 (MRP1/ABCC1)-Mediated Multidrug Resistance by Bivalent Apigenin Homodimers and Their Derivatives
Journal of Medicinal Chemistry 2009.0
Modulation of P-Glycoprotein-Mediated Multidrug Resistance by Flavonoid Derivatives and Analogues
Journal of Medicinal Chemistry 2003.0
Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators
European Journal of Medicinal Chemistry 2019.0
Structure−Activity Relationships Studies in a Series of N,N-Bis(alkanol)amine Aryl Esters as P-Glycoprotein (Pgp) Dependent Multidrug Resistance (MDR) Inhibitors
Journal of Medicinal Chemistry 2010.0
Structure−activity relationship study of novel 2-aminobenzofuran derivatives as P-glycoprotein inhibitors
European Journal of Medicinal Chemistry 2017.0
New structure–activity relationship studies in a series of N,N-bis(cyclohexanol)amine aryl esters as potent reversers of P-glycoprotein-mediated multidrug resistance (MDR)
Bioorganic & Medicinal Chemistry 2013.0