Optimised expression and spectral analysis of the target enzyme CYP51 from Penicillium digitatum with possible new DMI fungicides

Pest Management Science
2010.0

Abstract

BACKGROUND: Sterol 14α-demethylase (CYP51), a key target of azole (DMI) fungicides, can be expressed in both prokaryotes and eukaryotes. Green mould of citrus, caused by Penicillium digitatum (Pers.) Sacc., is a serious post-harvest disease. To develop specific and more effective fungicides against this disease, the characteristics of the interaction between sterol 14α-demethylase from P. digitatum (PdCYP51) and possible new fungicides were analysed. The cyp51 gene of P. digitatum was cloned and expressed under different conditions in Escherichia coli (Mig.) Cast. & Chalm., and the binding spectra of PdCYP51 were explored by the addition of two commercial azoles and four new nitrogen compounds. RESULTS: The yield of soluble protein (PdCYP51) was largest when expressed in Rosetta (DE3) induced by 0.5 mM IPTG for 8 h at 30 °C. Compound B (7-methoxy-2H-benzo[b][1,4]thiazine-3-amine) showed the strongest binding activity of the four new nitrogen compounds, with a K(d) value of 0.268 µM. The K(d) values of the six compounds were significantly correlated with their EC(50) values. CONCLUSION: The spectral analysis and bioassay results could be used to screen the new chemical entities effectively. Compound B, selected by virtual screening from a commercial chemical library, is a candidate for a new DMI fungicide. These results provide a theoretical basis and new ideas for efficient design and development of new antifungal agents.

Knowledge Graph

Similar Paper

Optimised expression and spectral analysis of the target enzyme CYP51 from Penicillium digitatum with possible new DMI fungicides
Pest Management Science 2010.0
Synthesis, Fungicidal Activity, and Sterol 14α-Demethylase Binding Interaction of 2-Azolyl-3,4-dihydroquinazolines on Penicillium digitatum
Journal of Agricultural and Food Chemistry 2013.0
Expression, Purification, and Characterization of Aspergillus fumigatus Sterol 14-α Demethylase (CYP51) Isoenzymes A and B
Antimicrobial Agents and Chemotherapy 2010.0
Antifungal activities of novel non-azole molecules against S. cerevisiae and C. albicans
European Journal of Medicinal Chemistry 2012.0
Complementation of a Saccharomyces cerevisiae ERG11/CYP51 (Sterol 14α-Demethylase) Doxycycline-Regulated Mutant and Screening of the Azole Sensitivity of Aspergillus fumigatus Isoenzymes CYP51A and CYP51B
Antimicrobial Agents and Chemotherapy 2010.0
Design, synthesis, and biological evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase
European Journal of Medicinal Chemistry 2009.0
In vitro screening of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives as antiprotozoal agents and docking studies on Trypanosoma cruzi CYP51
European Journal of Medicinal Chemistry 2016.0
Differential Azole Antifungal Efficacies Contrasted Using a Saccharomyces cerevisiae Strain Humanized for Sterol 14α-Demethylase at the Homologous Locus
Antimicrobial Agents and Chemotherapy 2008.0
Discovery of highly potent novel antifungal azoles by structure-based rational design
Bioorganic & Medicinal Chemistry Letters 2009.0
Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives
European Journal of Medicinal Chemistry 2011.0