In vitro screening of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives as antiprotozoal agents and docking studies on Trypanosoma cruzi CYP51

European Journal of Medicinal Chemistry
2016.0

Abstract

Sterol 14α-demethylase (CYP51) is a key enzyme involved in the survival and virulence of many parasite protozoa, such as Trypanosoma and Leishmania species, thus representing a valuable drug target for the treatment of Kinetoplastid diseases. A set of azole-based compounds selected from an in-house compound library was in vitro screened against different human protozoan parasites. Several compounds showed selective activity against Trypanosoma cruzi, with compound 7 being the most active (IC50 = 40 nM). Given the structural similarity between the compounds here reported and known CYP51 inhibitors, a molecular docking study was performed to assess their binding with protozoal target and to rationalize the biological activity data.

Knowledge Graph

Similar Paper

In vitro screening of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives as antiprotozoal agents and docking studies on Trypanosoma cruzi CYP51
European Journal of Medicinal Chemistry 2016.0
Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation, binding mode prediction and SAR exploration
European Journal of Medicinal Chemistry 2018.0
Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents
European Journal of Medicinal Chemistry 2018.0
Antitrypanosomal Lead Discovery: Identification of a Ligand-Efficient Inhibitor of Trypanosoma cruzi CYP51 and Parasite Growth
Journal of Medicinal Chemistry 2013.0
Design, Synthesis, and Biological Evaluation of New 1-(Aryl-1H-pyrrolyl)(phenyl)methyl-1H-imidazole Derivatives as Antiprotozoal Agents
Journal of Medicinal Chemistry 2019.0
Discovery of 4-((1-(1H-imidazol-2-yl)alkoxy)methyl)pyridines as a new class of Trypanosoma cruzi growth inhibitors
Bioorganic & Medicinal Chemistry Letters 2020.0
Binding Mode and Potency of N-Indolyloxopyridinyl-4-aminopropanyl-Based Inhibitors Targeting Trypanosoma cruzi CYP51
Journal of Medicinal Chemistry 2014.0
Antiprotozoal Activity of 1-Phenethyl-4-Aminopiperidine Derivatives
Antimicrobial Agents and Chemotherapy 2009.0
Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation
Bioorganic & Medicinal Chemistry 2015.0
Rational Development of 4-Aminopyridyl-Based Inhibitors Targeting Trypanosoma cruzi CYP51 as Anti-Chagas Agents
Journal of Medicinal Chemistry 2013.0