New 2-(Aryloxy)-3-phenylpropanoic Acids as Peroxisome Proliferator-Activated Receptor α/γ Dual Agonists Able To Upregulate Mitochondrial Carnitine Shuttle System Gene Expression

Journal of Medicinal Chemistry
2013.0

Abstract

The preparation of a series of 2-(aryloxy)-3-phenylpropanoic acids, resulting from the introduction of different substituents into the biphenyl system of the previously reported peroxisome proliferator-activated receptor α/γ (PPARα/γ) dual agonist 1, allowed the identification of new ligands with higher potency on PPARα and fine-tuned moderate PPARγ activity. For the most promising stereoisomer (S)-16, X-ray and calorimetric studies in PPARγ revealed, at high ligand concentration, the presence of two molecules simultaneously bound to the receptor. On the basis of these results and docking experiments in both receptor subtypes, a molecular explanation was provided for its different behavior as a full and partial agonist of PPARα and PPARγ, respectively. The effects of (S)-16 on mitochondrial acylcarnitine carrier and carnitine-palmitoyl-transferase 1 gene expression, two key components of the carnitine shuttle system, were also investigated, allowing the hypothesis of a more beneficial pharmacological profile of this compound compared to the less potent PPARα agonist fibrates currently used in therapy.

Knowledge Graph

Similar Paper

New 2-(Aryloxy)-3-phenylpropanoic Acids as Peroxisome Proliferator-Activated Receptor α/γ Dual Agonists Able To Upregulate Mitochondrial Carnitine Shuttle System Gene Expression
Journal of Medicinal Chemistry 2013.0
New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity
European Journal of Medicinal Chemistry 2017.0
New 2-Aryloxy-3-phenyl-propanoic Acids As Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists with Improved Potency and Reduced Adverse Effects on Skeletal Muscle Function
Journal of Medicinal Chemistry 2009.0
Design, synthesis, and structure–activity relationship of carbamate-tethered aryl propanoic acids as novel PPARα/γ dual agonists
Bioorganic & Medicinal Chemistry Letters 2007.0
Design, synthesis and biological evaluation of a class of bioisosteric oximes of the novel dual peroxisome proliferator-activated receptor α/γ ligand LT175
European Journal of Medicinal Chemistry 2015.0
Synthesis and evaluation of novel α-heteroaryl-phenylpropanoic acid derivatives as PPARα/γ dual agonists
Bioorganic & Medicinal Chemistry 2009.0
Synthesis, Biological Evaluation, and Molecular Modeling Investigation of New Chiral Fibrates with PPARα and PPARγ Agonist Activity
Journal of Medicinal Chemistry 2005.0
Structural Basis for PPARs Activation by The Dual PPARα/γ Agonist Sanguinarine: A Unique Mode of Ligand Recognition
Molecules 2021.0
Pyridine-2-propanoic acids: Discovery of dual PPARα/γ agonists as antidiabetic agents
Bioorganic & Medicinal Chemistry Letters 2006.0
Identification of dual PPARα/γ agonists and their effects on lipid metabolism
Bioorganic & Medicinal Chemistry 2015.0