Development of N-Hydroxycinnamamide-Based Histone Deacetylase Inhibitors with an Indole-Containing Cap Group

ACS Medicinal Chemistry Letters
2013.0

Abstract

A novel series of histone deacetylase inhibitors combining N-hydroxycinnamamide bioactive fragment and indole bioactive fragment was designed and synthesized. Several compounds (17c, 17g, 17h, 17j and 17k) exhibited comparable even superior total HDACs inhibitory activity and in vitro antiproliferative activities relative to the approved drug SAHA. A representative compound 17a with moderate HDACs inhibition was progressed to isoform selectivity profile, western blot analysis and in vivo antitumor assay. Although HDACs isoform selectivity of 17a was similar to that of SAHA, our western blot results indicated that intracellular effects of 17a at 1 μM were class I selective. It was noteworthy that the effect on histone H4 acetylation of SAHA decreased with time while the effect on histone H4 acetylation of 17a maintained even increased. Most importantly, compound 17a exhibited promising in vivo antitumor activity in a U937 xenograft model.

Knowledge Graph

Similar Paper

Development of N-Hydroxycinnamamide-Based Histone Deacetylase Inhibitors with an Indole-Containing Cap Group
ACS Medicinal Chemistry Letters 2013.0
Development of N -hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity
Bioorganic & Medicinal Chemistry 2017.0
Design, synthesis and activity evaluation of indole-based double – Branched HDAC1 inhibitors
Bioorganic & Medicinal Chemistry 2019.0
Synthesis and Biological Evaluation of 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indoles as Potent Histone Deacetylase Inhibitors with Antitumor Activity in Vivo
Journal of Medicinal Chemistry 2012.0
Development of 3-hydroxycinnamamide-based HDAC inhibitors with potent in vitro and in vivo anti-tumor activity
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors
European Journal of Medicinal Chemistry 2009.0
Design and synthesis of a new generation of substituted purine hydroxamate analogs as histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2016.0
Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors
Bioorganic & Medicinal Chemistry 2015.0
Development of N-hydroxybenzamide derivatives with indole-containing cap group as histone deacetylases inhibitors
Bioorganic & Medicinal Chemistry 2015.0