Lead Optimization of Ethyl 6-Aminonicotinate Acyl Sulfonamides as Antagonists of the P2Y12 Receptor. Separation of the Antithrombotic Effect and Bleeding for Candidate Drug AZD1283

Journal of Medicinal Chemistry
2013.0

Abstract

Synthesis and structure-activity relationships of ethyl 6-aminonicotinate acyl sulfonamides, which are potent antagonists of the P2Y12 receptor, are presented. Shifting from 5-chlorothienyl to benzyl sulfonamides significantly increased the potency in the residual platelet count assay. Evaluation of PK parameters in vivo in dog for six compounds showed a 10-fold higher clearance for the azetidines than for the matched-pair piperidines. In a modified Folts model in dog, both piperidine 3 and azetidine 13 dose-dependently induced increases in blood flow and inhibition of ADP-induced platelet aggregation with antithrombotic ED50 values of 3.0 and 10 μg/kg/min, respectively. The doses that induced a larger than 3-fold increase in bleeding time were 33 and 100 μg/kg/min for 3 and 13, respectively. Thus, the therapeutic index (TI) was ≥ 10 for both compounds. On the basis of these data, compound 3 was progressed into human clinical trials as candidate drug AZD1283.

Knowledge Graph

Similar Paper

Lead Optimization of Ethyl 6-Aminonicotinate Acyl Sulfonamides as Antagonists of the P2Y<sub>12</sub> Receptor. Separation of the Antithrombotic Effect and Bleeding for Candidate Drug AZD1283
Journal of Medicinal Chemistry 2013.0
Optimization of P2Y<sub>12</sub> Antagonist Ethyl 6-(4-((Benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283) Led to the Discovery of an Oral Antiplatelet Agent with Improved Druglike Properties
Journal of Medicinal Chemistry 2019.0
P2Y12 antagonists: Approved drugs, potential naturally isolated and synthesised compounds, and related in-silico studies
European Journal of Medicinal Chemistry 2022.0
N-[6-(4-Butanoyl-5-methyl-1H-pyrazol-1-yl)pyridazin-3-yl]-5-chloro-1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-1H-indole-3-carboxamide (SAR216471), a Novel Intravenous and Oral, Reversible, and Directly Acting P2Y12 Antagonist
Journal of Medicinal Chemistry 2014.0
Discovery of 4-Aryl-7-Hydroxyindoline-Based P2Y<sub>1</sub> Antagonists as Novel Antiplatelet Agents
Journal of Medicinal Chemistry 2014.0
High-Affinity, Non-Nucleotide-Derived Competitive Antagonists of Platelet P2Y<sub>12</sub>Receptors
Journal of Medicinal Chemistry 2009.0
Identification of 1-{2-[4-chloro-1′-(2,2-dimethylpropyl)-7-hydroxy-1,2-dihydrospiro[indole-3,4′-piperidine]-1-yl]phenyl}-3-{5-chloro-[1,3]thiazolo[5,4-b]pyridin-2-yl}urea, a potent, efficacious and orally bioavailable P2Y1 antagonist as an antiplatelet agent
Bioorganic &amp; Medicinal Chemistry Letters 2014.0
Several non-salt and solid thienopyridine derivatives as oral P2Y12 receptor inhibitors with good stability
Bioorganic &amp; Medicinal Chemistry Letters 2022.0
Lipophilic Modifications to Dinucleoside Polyphosphates and Nucleotides that Confer Antagonist Properties at the Platelet P2Y<sub>12</sub> Receptor
Journal of Medicinal Chemistry 2008.0
Naturally occurring N 6 -substituted adenosines (cytokinin ribosides) are in vitro inhibitors of platelet aggregation: An in silico evaluation of their interaction with the P2Y 12 receptor
Bioorganic &amp; Medicinal Chemistry Letters 2014.0