Discovery of 4-Aryl-7-Hydroxyindoline-Based P2Y1 Antagonists as Novel Antiplatelet Agents

Journal of Medicinal Chemistry
2014.0

Abstract

Adenosine diphosphate (ADP)-mediated platelet aggregation is signaled through two distinct G protein-coupled receptors (GPCR) on the platelet surface: P2Y12 and P2Y1. Blocking P2Y12 receptor is a clinically well-validated strategy for antithrombotic therapy. P2Y1 antagonists have been shown to have the potential to provide equivalent antithrombotic efficacy as P2Y12 inhibitors with reduced bleeding in preclinical animal models. We have previously reported the discovery of a potent and orally bioavailable P2Y1 antagonist, 1. This paper describes further optimization of 1 by introducing 4-aryl groups at the hydroxylindoline in two series. In the neutral series, 10q was identified with excellent potency and desirable pharmacokinetic (PK) profile. It also demonstrated similar antithrombotic efficacy with less bleeding compared with the known P2Y12 antagonist prasugrel in rabbit efficacy/bleeding models. In the basic series, 20c (BMS-884775) was discovered with an improved PK and liability profile over 1. These results support P2Y1 antagonism as a promising new antiplatelet target.

Knowledge Graph

Similar Paper

Discovery of 4-Aryl-7-Hydroxyindoline-Based P2Y<sub>1</sub> Antagonists as Novel Antiplatelet Agents
Journal of Medicinal Chemistry 2014.0
N-[6-(4-Butanoyl-5-methyl-1H-pyrazol-1-yl)pyridazin-3-yl]-5-chloro-1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-1H-indole-3-carboxamide (SAR216471), a Novel Intravenous and Oral, Reversible, and Directly Acting P2Y12 Antagonist
Journal of Medicinal Chemistry 2014.0
Identification of 1-{2-[4-chloro-1′-(2,2-dimethylpropyl)-7-hydroxy-1,2-dihydrospiro[indole-3,4′-piperidine]-1-yl]phenyl}-3-{5-chloro-[1,3]thiazolo[5,4-b]pyridin-2-yl}urea, a potent, efficacious and orally bioavailable P2Y1 antagonist as an antiplatelet agent
Bioorganic &amp; Medicinal Chemistry Letters 2014.0
New highly active antiplatelet agents with dual specificity for platelet P2Y1 and P2Y12 adenosine diphosphate receptors
European Journal of Medicinal Chemistry 2016.0
P2Y12 antagonists: Approved drugs, potential naturally isolated and synthesised compounds, and related in-silico studies
European Journal of Medicinal Chemistry 2022.0
Conformationally Constrained ortho-Anilino Diaryl Ureas: Discovery of 1-(2-(1′-Neopentylspiro[indoline-3,4′-piperidine]-1-yl)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea, a Potent, Selective, and Bioavailable P2Y<sub>1</sub> Antagonist
Journal of Medicinal Chemistry 2013.0
Lipophilic Modifications to Dinucleoside Polyphosphates and Nucleotides that Confer Antagonist Properties at the Platelet P2Y<sub>12</sub> Receptor
Journal of Medicinal Chemistry 2008.0
Discovery of Two Novel Antiplatelet Clinical Candidates (BMS-986120 and BMS-986141) That Antagonize Protease-Activated Receptor 4
Journal of Medicinal Chemistry 2022.0
Lead Optimization of Ethyl 6-Aminonicotinate Acyl Sulfonamides as Antagonists of the P2Y<sub>12</sub> Receptor. Separation of the Antithrombotic Effect and Bleeding for Candidate Drug AZD1283
Journal of Medicinal Chemistry 2013.0
Optimization of P2Y<sub>12</sub> Antagonist Ethyl 6-(4-((Benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283) Led to the Discovery of an Oral Antiplatelet Agent with Improved Druglike Properties
Journal of Medicinal Chemistry 2019.0