Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2

European Journal of Medicinal Chemistry
2013.0

Abstract

Multidrug resistance (MDR) often leads to a failure of cancer chemotherapy. Breast Cancer Resistance Protein (BCRP/ABCG2), a member of the superfamily of ATP binding cassette proteins has been found to confer MDR in cancer cells by transporting molecules with amphiphilic character out of the cells using energy from ATP hydrolysis. Inhibiting BCRP can be a solution to overcome MDR. We synthesized a series of flavones, 7,8-benzoflavones and 5,6-benzoflavones with varying substituents at positions 3, 3' and 4' of the (benzo)flavone structure. All synthesized compounds were tested for BCRP inhibition in Hoechst 33342 and pheophorbide A accumulation assays using MDCK cells expressing BCRP. All the compounds were further screened for their P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP1) inhibitory activity by calcein AM accumulation assay to check the selectivity towards BCRP. In addition most active compounds were investigated for their cytotoxicity. It was observed that in most cases 7,8-benzoflavones are more potent in comparison to the 5,6-benzoflavones. In general it was found that presence of a 3-OCH3 substituent leads to increase in activity in comparison to presence of OH or no substitution at position 3. Also, it was found that presence of 3',4'-OCH3 on phenyl ring lead to increase in activity as compared to other substituents. Compound 24, a 7,8-benzoflavone derivative was found to be most potent being 50 times selective for BCRP and showing very low cytotoxicity at higher concentrations.

Knowledge Graph

Similar Paper

Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2
European Journal of Medicinal Chemistry 2013.0
Flavonoids Are Inhibitors of Breast Cancer Resistance Protein (ABCG2)-Mediated Transport
Molecular Pharmacology 2004.0
Triazole Bridged Flavonoid Dimers as Potent, Nontoxic, and Highly Selective Breast Cancer Resistance Protein (BCRP/ABCG2) Inhibitors
Journal of Medicinal Chemistry 2019.0
Flavonoid Monomers as Potent, Nontoxic, and Selective Modulators of the Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2021.0
Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP)
Bioorganic & Medicinal Chemistry 2011.0
Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors
Bioorganic & Medicinal Chemistry Letters 2017.0
Piperazinobenzopyranones and Phenalkylaminobenzopyranones:  Potent Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2005.0
Acridone derivatives: Design, synthesis, and inhibition of breast cancer resistance protein ABCG2
Bioorganic & Medicinal Chemistry 2007.0
Synthesis and biological investigation of 2,4-substituted quinazolines as highly potent inhibitors of breast cancer resistance protein (ABCG2)
European Journal of Medicinal Chemistry 2017.0
4-Anilino-2-pyridylquinazolines and -pyrimidines as Highly Potent and Nontoxic Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2017.0