Acridone derivatives: Design, synthesis, and inhibition of breast cancer resistance protein ABCG2

Bioorganic & Medicinal Chemistry
2007.0

Abstract

The breast cancer resistance protein (BCRP, ABCG2) is among the latest discovered ABC proteins to be involved in MDR phenotype and for which only few inhibitors are known. In continuing our program aimed at discovering efficient multidrug resistance modulators, we conceived and synthesized new acridones as ABCG2 inhibitors. The design of target molecules was based on earlier results dealing with ABCG2 inhibition with flavone and chromone derivatives. The human wild-type (R482) ABCG2-transfected cells were used for rational screening of inhibitory acridones. The synthesis of target compounds, the inhibitory activity against ABCG2, and structure-activity relationships are described. One of the acridones was even more potent than the reference inhibitor, GF120918, as shown by its ability to inhibit mitoxantrone efflux.

Knowledge Graph

Similar Paper

Acridone derivatives: Design, synthesis, and inhibition of breast cancer resistance protein ABCG2
Bioorganic & Medicinal Chemistry 2007.0
4-Anilino-2-pyridylquinazolines and -pyrimidines as Highly Potent and Nontoxic Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2017.0
Piperazinobenzopyranones and Phenalkylaminobenzopyranones:  Potent Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2005.0
Structure–Activity Relationships of Chromone Derivatives toward the Mechanism of Interaction with and Inhibition of Breast Cancer Resistance Protein ABCG2
Journal of Medicinal Chemistry 2013.0
Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2
European Journal of Medicinal Chemistry 2013.0
Flavonoid Monomers as Potent, Nontoxic, and Selective Modulators of the Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2021.0
Synthesis and ABCG2 inhibitory evaluation of 5-N-acetylardeemin derivatives
Bioorganic & Medicinal Chemistry 2015.0
Triazole Bridged Flavonoid Dimers as Potent, Nontoxic, and Highly Selective Breast Cancer Resistance Protein (BCRP/ABCG2) Inhibitors
Journal of Medicinal Chemistry 2019.0
Synthesis and Biological Evaluation of 4-Anilino-quinazolines and -quinolines as Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2016.0
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators
European Journal of Medicinal Chemistry 2022.0