Keap Calm, and Carry on Covalently

Journal of Medicinal Chemistry
2013.0

Abstract

The Nrf2-Keap1 system plays a major role in cellular defense against oxidative stress. Upon exposure to electrophiles, the cysteine-rich protein Keap1 is covalently modified, and it is this modification of Keap1 that allows the accumulation and subsequent nuclear translocation of Nrf2 where it induces the transcription of over 100 protective genes. This mechanism can be exploited in drug discovery approaches to diseases such as chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), asthma, and neurodegenerative diseases like multiple sclerosis (MS) and Parkinson's, utilizing the modification of Keap1 by electrophiles, compounds that would not normally be considered useful in drug discovery programs. This Perspective discusses the development of potential therapies based on potent electrophiles, such as isothiocyanates and Michael acceptors, that, far from being associated with toxic events, can actually initiate a range of beneficial protective pathways.

Knowledge Graph

Similar Paper

Keap Calm, and Carry on Covalently
Journal of Medicinal Chemistry 2013.0
Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors
European Journal of Medicinal Chemistry 2020.0
Monoacidic Inhibitors of the Kelch-like ECH-Associated Protein 1: Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein–Protein Interaction with High Cell Potency Identified by Fragment-Based Discovery
Journal of Medicinal Chemistry 2016.0
Activation of anti-oxidant Nrf2 signaling by substituted trans stilbenes
Bioorganic & Medicinal Chemistry 2017.0
Phenyl Bis-Sulfonamide Keap1-Nrf2 Protein–Protein Interaction Inhibitors with an Alternative Binding Mode
Journal of Medicinal Chemistry 2022.0
Design, Synthesis, and Structure–Activity Relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein–Protein Interaction Inhibitors
Journal of Medicinal Chemistry 2020.0
A Comparative Assessment Study of Known Small-Molecule Keap1−Nrf2 Protein–Protein Interaction Inhibitors: Chemical Synthesis, Binding Properties, and Cellular Activity
Journal of Medicinal Chemistry 2019.0
Discovery of Potent Keap1–Nrf2 Protein–Protein Interaction Inhibitor Based on Molecular Binding Determinants Analysis
Journal of Medicinal Chemistry 2014.0
Design, Synthesis, and Evaluation of Triazole Derivatives That Induce Nrf2 Dependent Gene Products and Inhibit the Keap1–Nrf2 Protein–Protein Interaction
Journal of Medicinal Chemistry 2015.0
Discovery of benzo[g]indoles as a novel class of non-covalent Keap1-Nrf2 protein-protein interaction inhibitor
Bioorganic & Medicinal Chemistry Letters 2017.0