Discovery of benzo[g]indoles as a novel class of non-covalent Keap1-Nrf2 protein-protein interaction inhibitor

Bioorganic & Medicinal Chemistry Letters
2017.0

Abstract

The Keap1-Nrf2 system is an attractive target for drug discovery regarding various unmet medical needs. Only covalent inhibitors for protein-protein interaction (PPI) between Keap1 and Nrf2 to activate Nrf2 have been approved or are under clinical trials, but such electrophilic compounds lack selectivity. Therefore, specific non-covalent Keap1-Nrf2 PPI inhibitors are expected to be safer Nrf2 activators. We found a novel class of non-covalent Keap1-Nrf2 PPI inhibitor that has a benzo[g]indole skeleton and an indole-3-hydroxamic acid moiety and that exhibits significant PPI inhibitory activity. Additionally, the benzo[g]indole-3-carbohydrazide derivatives were newly prepared. The benzo[g]indole derivatives showed a stronger Keap1-Nrf2 PPI inhibitory activity than Cpd16, a previously reported non-covalent PPI inhibitor. Moreover, most of the PPI inhibitors showed a high metabolic stability in a human microsome system with a low cytotoxicity against HepG2 cell lines, which suggests that novel benzo[g]indole-type Keap1-Nrf2 PPI inhibitors are expected to be biological tools or lead compounds for Nrf2 activators.

Knowledge Graph

Similar Paper

Discovery of benzo[g]indoles as a novel class of non-covalent Keap1-Nrf2 protein-protein interaction inhibitor
Bioorganic & Medicinal Chemistry Letters 2017.0
Design, Synthesis, and Structure–Activity Relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein–Protein Interaction Inhibitors
Journal of Medicinal Chemistry 2020.0
A Comparative Assessment Study of Known Small-Molecule Keap1−Nrf2 Protein–Protein Interaction Inhibitors: Chemical Synthesis, Binding Properties, and Cellular Activity
Journal of Medicinal Chemistry 2019.0
Discovery of Potent Keap1–Nrf2 Protein–Protein Interaction Inhibitor Based on Molecular Binding Determinants Analysis
Journal of Medicinal Chemistry 2014.0
Phenyl Bis-Sulfonamide Keap1-Nrf2 Protein–Protein Interaction Inhibitors with an Alternative Binding Mode
Journal of Medicinal Chemistry 2022.0
Design, Synthesis, and Evaluation of Triazole Derivatives That Induce Nrf2 Dependent Gene Products and Inhibit the Keap1–Nrf2 Protein–Protein Interaction
Journal of Medicinal Chemistry 2015.0
Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors
European Journal of Medicinal Chemistry 2020.0
Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to Reconstruct New Potent Compounds
Journal of Medicinal Chemistry 2021.0
Monoacidic Inhibitors of the Kelch-like ECH-Associated Protein 1: Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein–Protein Interaction with High Cell Potency Identified by Fragment-Based Discovery
Journal of Medicinal Chemistry 2016.0
Optimization of 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acids as inhibitors of Keap1-Nrf2 protein-protein interaction to suppress neuroinflammation
Bioorganic & Medicinal Chemistry 2021.0