Design and synthesis of potent and selective P2X3 receptor antagonists derived from PPADS as potential pain modulators

European Journal of Medicinal Chemistry
2013.0

Abstract

Pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (7a, PPADS), a nonselective P2X receptor antagonist, was extensively modified to develop more stable, potent, and selective P2X₃ receptor antagonists as potential antinociceptive agents. Based on the results of our previous report, all strong anionic groups in PPADS including phosphate and sulfonate groups were changed to carboxylic acids or deleted. The unstable azo (-NN-) linkage of 7a was transformed to more stable carbon-carbon, ether or amide linkages through the synthesis of the 5-hydroxyl-pyridine moieties with substituents at 2 position via a Diels-Alder reaction. This resulted in the retention of antagonistic activity (IC50 = 400 ∼ 700 nM) at the hP2X₃ receptor in the two-electrode voltage clamp (TEVC) assay system on the Xenopus oocytes. Introduction of bulky aromatic groups at the carbon linker, as in compounds 13 h-n, dramatically improved the selectivity profiles of hP2X₃ when compared with mP2X₁ and hP2X₇ receptors. Among the substituents tested at the 2-position, the m-phenoxybenzyl group showed optimum selectivity and potency at the hP2X₃ receptor. In searching for effective substituents at the 4- and 3-positions, we found that compound 36j, with 4-carboxaldehyde, 3-propenoic acid and 2-(m-phenoxy)benzyl groups, was the most potent and selective hP2X₃ receptor antagonist with an IC50 of 60 nM at hP2X₃ and marginal antagonistic activities of 10 μM at mP2X₁ and hP2X₇. Furthermore, using an ex-vivo assay system, we found that compound 36j potently inhibited pain signaling in the rat dorsal horn with 20 μM 36j displaying 65% inhibition while 20 μM pregabalin, a clinically available drug, showed only 31% inhibition.

Knowledge Graph

Similar Paper

Design and synthesis of potent and selective P2X3 receptor antagonists derived from PPADS as potential pain modulators
European Journal of Medicinal Chemistry 2013.0
Synthesis and structure–activity relationships of carboxylic acid derivatives of pyridoxal as P2X receptor antagonists
Bioorganic & Medicinal Chemistry 2013.0
Pyrrolinone derivatives as a new class of P2X3 receptor antagonists. Part 3: Structure-activity relationships of pyrropyrazolone derivatives
Bioorganic & Medicinal Chemistry Letters 2020.0
Discovery of Novel 2,5-Dioxoimidazolidine-Based P2X<sub>7</sub>Receptor Antagonists as Constrained Analogues of KN62
Journal of Medicinal Chemistry 2015.0
N-Substituted Phenoxazine and Acridone Derivatives: Structure–Activity Relationships of Potent P2X4 Receptor Antagonists
Journal of Medicinal Chemistry 2012.0
Therapeutic potentials and structure-activity relationship of 1,3-benzodioxole N-carbamothioyl carboxamide derivatives as selective and potent antagonists of P2X4 and P2X7 receptors
European Journal of Medicinal Chemistry 2022.0
Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists
Journal of Medicinal Chemistry 2020.0
Discovery and structure–activity relationships of a series of pyroglutamic acid amide antagonists of the P2X7 receptor
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Design and synthesis of adamantane-1-carbonyl thiourea derivatives as potent and selective inhibitors of h-P2X4 and h-P2X7 receptors: An Emerging therapeutic tool for treatment of inflammation and neurological disorders
European Journal of Medicinal Chemistry 2022.0
Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: A new approach for the treatment of pain
European Journal of Medicinal Chemistry 2018.0