Inhibition of carbonic anhydrases from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and S. azorense (SazCA) with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties

Bioorganic & Medicinal Chemistry
2014.0

Abstract

A series of new sulfonamides was prepared starting from 2-oxo-N'-(4-sulfamoylphenyl)-propanehydrazonoyl chloride, a sulfanilamide derivative, which was reacted with aroylhydrazides, amines, or thiols. A library of derivatives incorporating aroylhydrazone, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenyl-methylene)-1,3,4-thiadiazol-3(2H)-yl moieties was thus synthesized. The new compounds were investigated as inhibitors of four α-carbonic anhydrases (CAs, EC 4.2.1.1), the human (h) isoforms hCA I and II, and the bacterial ones recently isolated from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and Sulfurihydrogenibium azorense (SazCA). Low nanomolar activity was observed against hCA II (KIs of 0.56-17.1 nM) whereas hCA I was less inhibited by these compounds (K(I)s of 86.4 nM-32.8 μM). The bacterial CAs were also effectively inhibited by these derivatives (K(I)s in the range of 0.77-234 nM against SazCA, and of 6.2-89.1 against SspCA, respectively), with several low nanomolar/subnanomolar inhibitors detected against both of them. As SspCA and SazCA are among the most thermostable and catalytically active CAs, it is of interest to find modulators of their activity for potential biotechnologic applications.

Knowledge Graph

Similar Paper

Inhibition of carbonic anhydrases from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and S. azorense (SazCA) with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties
Bioorganic & Medicinal Chemistry 2014.0
The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides
Bioorganic & Medicinal Chemistry 2013.0
Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense
Bioorganic & Medicinal Chemistry Letters 2012.0
Anion inhibition studies of an α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1
Bioorganic & Medicinal Chemistry Letters 2012.0
Synthesis and human/bacterial carbonic anhydrase inhibition with a series of sulfonamides incorporating phthalimido moieties
Bioorganic & Medicinal Chemistry 2017.0
Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX
Bioorganic & Medicinal Chemistry Letters 2005.0
Pyridazinone substituted benzenesulfonamides as potent carbonic anhydrase inhibitors
Bioorganic & Medicinal Chemistry Letters 2016.0
Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, and IX with sulfonamides derived from 4-isothiocyanato-benzolamide
Bioorganic & Medicinal Chemistry Letters 2004.0
Tricyclic Sulfonamides Incorporating Benzothiopyrano[4,3-c]pyrazole and Pyridothiopyrano[4,3-c]pyrazole Effectively Inhibit α- and β-Carbonic Anhydrase: X-ray Crystallography and Solution Investigations on 15 Isoforms
Journal of Medicinal Chemistry 2012.0
5-Substituted-benzylsulfanyl-thiophene-2-sulfonamides with effective carbonic anhydrase inhibitory activity: Solution and crystallographic investigations
Bioorganic & Medicinal Chemistry 2017.0