Discovery of ABT-267, a Pan-Genotypic Inhibitor of HCV NS5A

Journal of Medicinal Chemistry
2014.0

Abstract

We describe here N-phenylpyrrolidine-based inhibitors of HCV NS5A with excellent potency, metabolic stability, and pharmacokinetics. Compounds with 2S,5S stereochemistry at the pyrrolidine ring provided improved genotype 1 (GT1) potency compared to the 2R,5R analogues. Furthermore, the attachment of substituents at the 4-position of the central N-phenyl group resulted in compounds with improved potency. Substitution with tert-butyl, as in compound 38 (ABT-267), provided compounds with low-picomolar EC50 values and superior pharmacokinetics. It was discovered that compound 38 was a pan-genotypic HCV inhibitor, with an EC50 range of 1.7-19.3 pM against GT1a, -1b, -2a, -2b, -3a, -4a, and -5a and 366 pM against GT6a. Compound 38 decreased HCV RNA up to 3.10 log10 IU/mL during 3-day monotherapy in treatment-naive HCV GT1-infected subjects and is currently in phase 3 clinical trials in combination with an NS3 protease inhibitor with ritonavir (r) (ABT-450/r) and an NS5B non-nucleoside polymerase inhibitor (ABT-333), with and without ribavirin.

Knowledge Graph

Similar Paper

Discovery of ABT-267, a Pan-Genotypic Inhibitor of HCV NS5A
Journal of Medicinal Chemistry 2014.0
Discovery and Characterization of Potent Pan-Genotypic HCV NS5A Inhibitors Containing Novel Tricyclic Central Core Leading to Clinical Candidate
Journal of Medicinal Chemistry 2019.0
Pyrrolo[1,2-b]pyridazin-2-ones as potent inhibitors of HCV NS5B polymerase
Bioorganic & Medicinal Chemistry Letters 2008.0
Discovery of a Series of 2′-α-Fluoro,2′-β-bromo-ribonucleosides and Their Phosphoramidate Prodrugs as Potent Pan-Genotypic Inhibitors of Hepatitis C Virus
Journal of Medicinal Chemistry 2019.0
Hexahydro-pyrrolo- and hexahydro-1H-pyrido[1,2-b]pyridazin-2-ones as potent inhibitors of HCV NS5B polymerase
Bioorganic & Medicinal Chemistry Letters 2008.0
Novel HCV NS5B polymerase inhibitors derived from 4-(1′,1′-dioxo-1′,4′-dihydro-1′λ6-benzo[1′,2′,4′]thiadiazin-3′-yl)-5-hydroxy-2H-pyridazin-3-ones. Part 3: Further optimization of the 2-, 6-, and 7′-substituents and initial pharmacokinetic assessments
Bioorganic & Medicinal Chemistry Letters 2008.0
Bicyclic octahydrocyclohepta[ b ]pyrrol-4(1 H )one derivatives as novel selective anti-hepatitis C virus agents
European Journal of Medicinal Chemistry 2016.0
Potent Hepatitis C Virus NS5A Inhibitors Containing a Benzidine Core
ACS Medicinal Chemistry Letters 2014.0
Synthesis and evaluation of novel potent HCV NS5A inhibitors
Bioorganic & Medicinal Chemistry Letters 2012.0
4-(1,1-Dioxo-1,4-dihydro-1λ6-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-ones as potent inhibitors of HCV NS5B polymerase
Bioorganic & Medicinal Chemistry Letters 2008.0