1,2,3,4,8,9,10,11-Octahydrobenzo[j]phenanthridine-7,12-diones as New Leads against Mycobacterium tuberculosis

Journal of Medicinal Chemistry
2014.0

Abstract

Tuberculosis (TB) continues to be a worldwide health problem with over 1.4 million deaths each year. Despite efforts to develop more effective vaccines, more reliable diagnostics, and chemotherapeutics, tuberculosis remains a threat to global health, fueled by the HIV pandemic and the rapid generation of drug resistance. The exploration of novel drugs to serve as a companion drug for existing drugs is of paramount importance. As part of our program to design new 2-aza-anthraquinones with antimycobacterial activity, various tetrahydro- and octahydrobenzo[j]phenanthridinediones were synthesized. These compounds showed high in vitro potency against Mycobacterium tuberculosis, the etiological agent of TB and against other clinically relevant mycobacterial species at submicromolar concentrations. The susceptibility of a multidrug resistant strain toward these compounds and their ability to target intracellular replicating Mycobacterium tuberculosis was demonstrated. Next to the acute toxicity, the genotoxicity of these compounds was investigated. Often overlooked in studies, genotoxicity could be dismissed for the investigated compounds, making them a promising scaffold in TB drug research.

Knowledge Graph

Similar Paper

1,2,3,4,8,9,10,11-Octahydrobenzo[j]phenanthridine-7,12-diones as New Leads against Mycobacterium tuberculosis
Journal of Medicinal Chemistry 2014.0
2,4-Dialkyl-8,9,10,11-tetrahydrobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraones as new leads against Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2014.0
The synthesis and in vitro biological evaluation of novel fluorinated tetrahydrobenzo[j]phenanthridine-7,12-diones against Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2019.0
Straightforward palladium-mediated synthesis and biological evaluation of benzo[j]phenanthridine-7,12-diones as anti-tuberculosis agents
European Journal of Medicinal Chemistry 2012.0
Identification, Synthesis, and Pharmacological Evaluation of Tetrahydroindazole Based Ligands as Novel Antituberculosis Agents
Journal of Medicinal Chemistry 2010.0
1H-Benzo[d]imidazoles and 3,4-dihydroquinazolin-4-ones: Design, synthesis and antitubercular activity
European Journal of Medicinal Chemistry 2018.0
The synthesis, biological evaluation and structure–activity relationship of 2-phenylaminomethylene-cyclohexane-1,3-diones as specific anti-tuberculosis agents
MedChemComm 2017.0
Studies on substituted benzo[h]quinazolines, benzo[g]indazoles, pyrazoles, 2,6-diarylpyridines as anti-tubercular agents
Bioorganic & Medicinal Chemistry Letters 2013.0
Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity
Journal of Medicinal Chemistry 2017.0
Biological evaluation of diazene derivatives as anti-tubercular compounds
European Journal of Medicinal Chemistry 2014.0