The synthesis and in vitro biological evaluation of novel fluorinated tetrahydrobenzo[j]phenanthridine-7,12-diones against Mycobacterium tuberculosis

European Journal of Medicinal Chemistry
2019.0

Abstract

Tuberculosis (TB) still has a major impact on public health. In order to efficiently eradicate this life-threatening disease, the exploration of novel anti-TB drugs is of paramount importance. As part of our program to design new 2-azaanthraquinones with anti-mycobacterial activity, various "out-of-plane" tetrahydro- and octahydrobenzo[j]phenanthridinediones were synthesized. In this study, the scaffold of the most promising hits was further optimized in an attempt to improve the bioactivity and to decrease enzymatic degradation. The rudiment bio-evaluation of a small library of fluorinated tetrahydrobenzo[j]phenanthridine-7,12-dione derivatives indicated no significant improvement of the bio-activity against intracellular and extracellular Mycobacterium tuberculosis (Mtb). Though, the derivatives showed an acceptable toxicity against J774A.1 macrophages and early signs of genotoxicity were absent. All derivatives showed to be metabolic stabile in the presence of both phase I and phase II murine or human microsomes. Finally, the onset of reactive oxygen species within Mtb after exposure to the derivatives was measured by electron paramagnetic resonance (EPR). Results showed that the most promising fluorinated derivative is still a possible candidate for the subversive inhibition of mycothione reductase.

Knowledge Graph

Similar Paper

The synthesis and in vitro biological evaluation of novel fluorinated tetrahydrobenzo[j]phenanthridine-7,12-diones against Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2019.0
1,2,3,4,8,9,10,11-Octahydrobenzo[j]phenanthridine-7,12-diones as New Leads against Mycobacterium tuberculosis
Journal of Medicinal Chemistry 2014.0
Straightforward palladium-mediated synthesis and biological evaluation of benzo[j]phenanthridine-7,12-diones as anti-tuberculosis agents
European Journal of Medicinal Chemistry 2012.0
2,4-Dialkyl-8,9,10,11-tetrahydrobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraones as new leads against Mycobacterium tuberculosis
European Journal of Medicinal Chemistry 2014.0
Antimycobacterial activities of novel 2-(sub)-3-fluoro/nitro-5,12-dihydro-5-oxobenzothiazolo[3,2-a]quinoline-6-carboxylic acid
Bioorganic & Medicinal Chemistry 2008.0
Novel ofloxacin derivatives: Synthesis, antimycobacterial and toxicological evaluation
Bioorganic & Medicinal Chemistry Letters 2008.0
Design, synthesis, andin vitrobiological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors ofMycobacterium tuberculosis
MedChemComm 2018.0
Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors
Bioorganic & Medicinal Chemistry Letters 2016.0
New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents
Bioorganic & Medicinal Chemistry Letters 2014.0
Synthesis of 3-heteroarylthioquinoline derivatives and their in vitro antituberculosis and cytotoxicity studies
European Journal of Medicinal Chemistry 2011.0