New indolylarylsulfones as highly potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors

European Journal of Medicinal Chemistry
2014.0

Abstract

New indolylarylsulfone HIV-1 NNRTIs were synthesized to evaluate unexplored substitutions of the benzyl/phenylethyl group linked at the indole-2-carboxamide. Against the NL4-3 HIV-1 WT strain, 17 out 20 compounds were superior to NVP and EFV. Several compounds inhibited the K103N HIV-1 mutant strain at nanomolar concentration and were superior to EFV. Some derivatives were superior to EFV against the Y181C and L100I HIV-1 mutant strains. Against the NL4-3 HIV-1 strain, the enantiomers 24 and 25 showed small differences of activity. In contrast, 24 turned out significantly more potent than 25 against the whole panel of mutant HIV-1 strains. The docking studies suggested that the difference in the observed inhibitory activities of 24 and 25 against the K03N mutation could be due to a kinetic rather than affinity differences.

Knowledge Graph

Similar Paper

New indolylarylsulfones as highly potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors
European Journal of Medicinal Chemistry 2014.0
Indolylarylsulfones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: New Cyclic Substituents at Indole-2-carboxamide
Journal of Medicinal Chemistry 2011.0
Indolyl Aryl Sulfones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors:  Role of Two Halogen Atoms at the Indole Ring in Developing New Analogues with Improved Antiviral Activity
Journal of Medicinal Chemistry 2007.0
New indolylarylsulfone non-nucleoside reverse transcriptase inhibitors show low nanomolar inhibition of single and double HIV-1 mutant strains
European Journal of Medicinal Chemistry 2020.0
New Nitrogen Containing Substituents at the Indole-2-carboxamide Yield High Potent and Broad Spectrum Indolylarylsulfone HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors
Journal of Medicinal Chemistry 2012.0
Indolylarylsulfones Bearing Natural and Unnatural Amino Acids. Discovery of Potent Inhibitors of HIV-1 Non-Nucleoside Wild Type and Resistant Mutant Strains Reverse Transcriptase and Coxsackie B4 Virus
Journal of Medicinal Chemistry 2009.0
Indolylarylsulfones Carrying a Heterocyclic Tail as Very Potent and Broad Spectrum HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors
Journal of Medicinal Chemistry 2014.0
Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement
European Journal of Medicinal Chemistry 2017.0
Novel indolylarylsulfone derivatives as covalent HIV-1 reverse transcriptase inhibitors specifically targeting the drug-resistant mutant Y181C
Bioorganic & Medicinal Chemistry 2021.0
Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing
European Journal of Medicinal Chemistry 2019.0