Indolylarylsulfones Carrying a Heterocyclic Tail as Very Potent and Broad Spectrum HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors

Journal of Medicinal Chemistry
2014.0

Abstract

We synthesized new indolylarylsulfone (IAS) derivatives carrying a heterocyclic tail at the indole-2-carboxamide nitrogen as potential anti-HIV/AIDS agents. Several new IASs yielded EC50 values <1.0 nM against HIV-1 WT and mutant strains in MT-4 cells. The (R)-11 enantiomer proved to be exceptionally potent against the whole viral panel; in the reverse transcriptase (RT) screening assay, it was remarkably superior to NVP and EFV and comparable to ETV. The binding poses were consistent with the one previously described for the IAS non-nucleoside reverse transcriptase inhibitors. Docking studies showed that the methyl group of (R)-11 points toward the cleft created by the K103N mutation, different from the corresponding group of (S)-11. By calculating the solvent-accessible surface, we observed that the exposed area of RT in complex with (S)-11 was larger than the area of the (R)-11 complex. Compounds 6 and 16 and enantiomer (R)-11 represent novel robust lead compounds of the IAS class.

Knowledge Graph

Similar Paper

Indolylarylsulfones Carrying a Heterocyclic Tail as Very Potent and Broad Spectrum HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors
Journal of Medicinal Chemistry 2014.0
Indolylarylsulfones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: New Cyclic Substituents at Indole-2-carboxamide
Journal of Medicinal Chemistry 2011.0
New indolylarylsulfone non-nucleoside reverse transcriptase inhibitors show low nanomolar inhibition of single and double HIV-1 mutant strains
European Journal of Medicinal Chemistry 2020.0
Indolylarylsulfones Bearing Natural and Unnatural Amino Acids. Discovery of Potent Inhibitors of HIV-1 Non-Nucleoside Wild Type and Resistant Mutant Strains Reverse Transcriptase and Coxsackie B4 Virus
Journal of Medicinal Chemistry 2009.0
New Nitrogen Containing Substituents at the Indole-2-carboxamide Yield High Potent and Broad Spectrum Indolylarylsulfone HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors
Journal of Medicinal Chemistry 2012.0
Chiral Indolylarylsulfone Non-Nucleoside Reverse Transcriptase Inhibitors as New Potent and Broad Spectrum Anti-HIV-1 Agents
Journal of Medicinal Chemistry 2017.0
New indolylarylsulfones as highly potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors
European Journal of Medicinal Chemistry 2014.0
Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing
European Journal of Medicinal Chemistry 2019.0
Indolylarylsulfones bearing phenylboronic acid and phenylboronate ester functionalities as potent HIV‑1 non-nucleoside reverse transcriptase inhibitors
Bioorganic &amp; Medicinal Chemistry 2022.0
Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement
European Journal of Medicinal Chemistry 2017.0