Multistage Screening Reveals Chameleon Ligands of the Human Farnesyl Pyrophosphate Synthase: Implications to Drug Discovery for Neurodegenerative Diseases

Journal of Medicinal Chemistry
2014.0

Abstract

Human farnesyl pyrophosphate synthase (hFPPS) is the gate-keeper of mammalian isoprenoids and the key target of bisphosphonate drugs. Bisphosphonates suffer from poor "drug-like" properties and are mainly effective in treating skeletal diseases. Recent investigations have implicated hFPPS in various nonskeletal diseases, including Alzheimer's disease (AD). Analysis of single nucleotide polymorphisms in the hFPPS gene and mRNA levels in autopsy-confirmed AD subjects was undertaken, and a genetic link between hFPPS and phosphorylated tau (P-Tau) levels in the human brain was identified. Elevated P-Tau levels are strongly implicated in AD progression. The development of nonbisphosphonate inhibitors can provide molecular tools for validating hFPPS as a therapeutic target for tauopathy-associated neurodegeneration. A multistage screening protocol led to the identification of a new monophosphonate chemotype that bind in an allosteric pocket of hFPPS. Optimization of these compounds could lead to human therapeutics that block tau metabolism and arrest the progression of neurodegeneration.

Knowledge Graph

Similar Paper

Multistage Screening Reveals Chameleon Ligands of the Human Farnesyl Pyrophosphate Synthase: Implications to Drug Discovery for Neurodegenerative Diseases
Journal of Medicinal Chemistry 2014.0
Novel bisphosphonate inhibitors of the human farnesyl pyrophosphate synthase
Bioorganic & Medicinal Chemistry Letters 2010.0
Probing the molecular and structural elements of ligands binding to the active site versus an allosteric pocket of the human farnesyl pyrophosphate synthase
Bioorganic & Medicinal Chemistry Letters 2015.0
Thienopyrimidine Bisphosphonate (ThPBP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Optimization and Characterization of the Mode of Inhibition
Journal of Medicinal Chemistry 2013.0
Design of potent bisphosphonate inhibitors of the human farnesyl pyrophosphate synthase via targeted interactions with the active site ‘capping’ phenyls
Bioorganic & Medicinal Chemistry 2012.0
Design and Synthesis of Active Site Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Apoptosis and Inhibition of ERK Phosphorylation in Multiple Myeloma Cells
Journal of Medicinal Chemistry 2012.0
Farnesyl Diphosphate Synthase Inhibitors With Unique Ligand-Binding Geometries
ACS Medicinal Chemistry Letters 2015.0
New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase
Bioorganic & Medicinal Chemistry 2014.0
Pyridinium-1-yl Bisphosphonates Are Potent Inhibitors of Farnesyl Diphosphate Synthase and Bone Resorption
Journal of Medicinal Chemistry 2005.0
Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase
Journal of Medicinal Chemistry 2008.0